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1 Chalk in Hand

Chalk in hand, his formulas expressed themselves, it seems, more

easily on the board than they were able to with pen in his note-

books, for in his listeners’ presence his fecund genius found again

a new zeal, and a ray of joy illuminated the lines of his face when

the proof he sought to render understandable struck his audience

as obvious.1

So recounts an admiring biographer the pedagogical exploits of Augustin-

Louis Cauchy, a towering figure of early nineteenth-century mathematics.

Cauchy was trained and then became Professor of Analysis at the prestigious

Ecole Polytechnique, a school for military engineers that not long before

Cauchy’s matriculation became one of the first to make systematic use of a

new mode of advanced mathematical instruction: lessons at a blackboard.

Today, chalk and blackboards are ubiquitous in mathematics education and
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1Valson 1868, 1:253, our translation from the French original.
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research. Chalk figures prominently in the imaginations and daily routines

of most mathematicians.

For Cauchy’s biographer, there was an organic link between chalk, genius,

audiences, mathematical proof, obviousness, and understanding. This link

persists to this day. There is, we contend, an essential relationship between

the supposedly abstract concepts and methods of advanced mathematics and

the material substituents and practices that constitute them. This process

operates even in the rarefied realm of mathematical research, where the pre-

tense of dealing purely in abstract, ideal, logical entities does not liberate

mathematicians from their dependence on materially circumscribed forms of

representation. That this self-effacing materiality is often unnoticed (unlike

the visible and controversial materiality of computerized mathematical proof

analyzed by MacKenzie 2001) makes the case of research mathematics all

the more important to the social study of theoretical representations. In-

deed, the very appearance of scholarly mathematics as a realm apart is a

social achievement of practices that produce mathematical ideas using ma-

terial surrogates.

This chapter reports a series of ethnographic findings centered on the

theme of chalk and blackboards as a way of illustrating the distinctive modes

of inscription underlying mathematical research. Chalk, here, functions both

as a metaphor and as a literal device in the construction and circulation of

new concepts. We begin, after a brief review of extant literature, by describ-

ing the quotidian contexts of such work. We then explore the blackboard as

a site of mathematical practice before finally expanding on its metaphorical

and allusive significance in other forms of research.

Our observations have a dual character. On the one hand, we describe

the supposedly distinctive realm of mathematics in a way that should ap-

pear consonant with other scholarly disciplines that one might imagine to be

rather different from it. Observations that would be “old news” about other

sciences or unsurprising to those acquainted with mathematical practice are

nevertheless significant in a context where so few investigations of the sort

2



we report here have been undertaken. On the other hand, we aim to account

in some small way for the distinctiveness of mathematics, both as a field of

study with its own characteristic objects and practices and as a domain that

succeeds in appearing far more distinctive than we would suggest is the case.

In our account, the formal rigor at the heart of mathematical order be-

comes indissociable from the “chalk in hand” character of routine mathe-

matical work. We call attention to the vast labor of decoding, translating,

and transmaterializing official texts without which advanced mathematics

could not proceed. More than that, we suggest that these putatively passive

substrates of mathematical knowledge and practice instead embody potent

resources and constraints that combine to shape mathematical research in

innumerable ways.

2 Prior Accounts

This conclusion, developed through Barany’s recent ethnographic study of

university mathematics researchers,2 builds on related literatures in the soci-

ology and history of logic and the natural sciences, the history of mathemat-

ics, and the sociology of settled mathematics. Closest in methods and analyti-

cal orientation is a range of historical and ethnographic accounts of university

researchers in ‘thinking sciences’ such as theoretical physics,3 artificial intel-

ligence,4 and symbolic logic.5 These accounts collectively demonstrate how

intersubjective resources are mobilized and disputed in the production of ab-

stract accounts of physical, social, or logical entities. Their concern for the

connection between theories and their means of articulation draws from early

2For a detailed account of the study’s methods and findings, see Barany 2010. Barany
observed the weekly seminar and conducted a series of interviews exploring the everyday
research practices and diachronic research developments of a group of early- and mid-career
mathematicians studying partial differential equations and related topics at a major British
research university.

3Of particular note are Ochs et al. 1994, 1996, and 1997, Galison 1997, Merz and Knorr
Cetina 1997, and Kaiser 2005.

4Suchman 1990 and Suchman and Trigg 1993.
5See Rosental 2004, 2008, and Greiffenhagen 2008.
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laboratory studies that documented the practical achievement of circulable

data and principles of scientific knowledge through the use of instruments

and other means of “inscription” or “rendering” that tame and transform

specimens of nature.6

Two bodies of scholarship help us to adapt the foregoing insights to our

study of mathematics. Historians and some empirically-minded philosophers

have used a variety of frameworks to trace the elaboration of specific math-

ematical theories and techniques.7 Sociologists, meanwhile, have described

mathematical pedagogy at many levels,8 elementary proofs and examples,9

and (less often) advanced theorems,10 detailing in each case the modes and

means of making already-established mathematical ideas intelligible. Some

take an explicitly cognitive approach11 and stress the mental and corporeal

structures that ground mathematical thinking.

Most users of advanced mathematics, and indeed most mathematicians

themselves, spend most of their time dealing with settled mathematics. This

is the mathematics of teaching and of many forms of problem solving, even

when these require deploying accepted results and methods in new ways, and

it has generally proven amenable to social and historical analysis. Due to the

obfuscations of temporal distance and conceptual difficulty, however, histori-

ans and sociologists of mathematics have struggled to account for the ongoing

achievement of original knowledge in a research context, such as has been

ventured for laboratory sciences. At present, those wishing to understand

the core activity in most mathematicians’ aspirations and self-identity must

rely on accounts by mathematicians themselves or philosophically-oriented

6Woolgar 1982 offers an early assessment of the literature; Lynch 1985 and Latour
and Woolgar 1986 are two influential examples, treating “rendering” and “inscription”
respectively; see also Lynch 1990 on the mathematical ordering of nature and Woolgar
1990 on documents in scientific practice.

7For example, Lakatos 1979, Bloor 1973, 1976, 1978, Mehrtens 1990, Pickering 1995,
Netz 1999, Jesseph 1999, and Warwick 2003.

8Lave 1988, Kirshner and Whitson 1997, Greiffenhagen and Sharrock 2005.
9Livingston 1999, Bloor 1976, Rotman 1988, 1993, 1997.

10Livingston 1986, MacKenzie 2001.
11E.g. Netz 1999, Lakoff and Núñez 2000. See also Hutchins 1995, Mialet 1999.
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treatises on the subject.12 While we cannot pretend to fill this lacuna, our

study offers a model for how such an account might proceed.

3 Mathematics in Action

On Mondays during term, members of the Analysis Group return from lunch

and assemble to hear a local or invited colleague’s hour-long presentation on

the fruits and conundrums of his or her13 recent and ongoing scholarship.

These lectures are marked by a shared specialized vocabulary and expertise

and sometimes-spirited outbursts of discussion over technical details. One

gets the impression, however, that the specific mathematics of the presenta-

tion is of at best marginal interest to most of the gathered audience. Some

jot notes or furrow their brows, but one is just as likely to see someone nod-

ding off to sleep as nodding in agreement. Most audience members regard

the speaker with a brand of reserved attentiveness that is easily mistaken for

comprehension.

Lurking in the seminar’s subtext and between the lines of multiple inter-

views was the open secret that mathematicians—even those in the same field,

working on the same topics, or veterans of multiple mutual collaborations—

tend to have comparatively little idea of what each other does.14 Mathemat-

ics is a staggeringly fragmented discipline whose practitioners must master

the art of communicating without co-understanding. Indeed, mathematicians

seem persistently preoccupied with sharing their work with each other, boldly

blinding themselves to the petty incomensurabilities of their studies in order

to join, on scales ranging from meetings with collaborators to international

congresses, in mutual mathematical activity.

Seminar performances are conditioned on a form of understanding whose

12Prominent ones include DeMillo, Lipton, and Perlis 1979, Davis and Hersh 1981, and
Thurston 1994; see also Heintz 2000 and Aschbacher 2005.

13Though women occasionally were present at the Analysis Seminar, all of the speakers
during the period of Barany’s study were men.

14Thurston (1994, 165 et passim) notes something similar, and Merz and Knorr Cetina
(1997, 74) identify a comparable phenomenon in theoretical physics.
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pervasive presence and role in mathematical education and research stands in

stark contrast to its minor role in extant accounts of mathematical proof and

cognition. Most in the seminar audience do not aim for a detailed working

knowledge of the results being presented—this can take years to acquire

(after which the talk would not have much to offer)—but rather comprehend

the talk in the sense of following the argument, engaging with the talk’s

conceptual narrative and technical and heuristic manipulations.

This “following” mode is reflected in how both speakers and participants

prepare for the seminar—which is to say, in large part, how they do not

prepare. Audience-members do not typically study for upcoming talks by

looking into the speaker’s topic or previous work. Seminar goers are easily

bored and prone to distraction, said one informant, adding that they rarely

care in any event about the details behind the speaker’s findings. Speakers

indicated that their preparations, depending on the formality and importance

of the occasion, ranged from “exactly four minutes” (an underestimate, but

not a wholly misleading one) to a week of sporadic effort. For a chalk lecture,

a single draft of highly-condensed notes suffices.

Nearly all of the speaker’s words and a varying but typically large portion

of what is written on the blackboard during a seminar are produced extem-

poraneously. Speakers are expected to produce written and oral expositions

with limited reference to notes, which serve primarily to help the speaker

to recall precise formulations of nuanced or complex theorems or definitions.

One result of the speaker’s lack of premeditation regarding inscriptions is the

frequent need to adjust notations mid-lecture—notations which do not nec-

essarily correspond to the ones used in the limited paper notes the speaker

had prepared.

Talks are not, of course, pulled from thin air. Rather, they rely on mathe-

maticians’ skill, honed through years of teaching, presenting, and interacting

with colleagues, of constructing an argument at the board from a collec-

tion of principles and conventions. These arguments are built out of shared

rhetorical scripts and graphical representations, practiced over many years
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and in many settings, that govern how commonly-used ideas and methods

are described and inscribed in mathematical discourse.15 Those conventions

also connect chalk-writing to speaking, so that those who make a record of

the talk tend only to transcribe text from the board, making comparatively

few notes from the spoken component of the presentation.

Seminars are thus conditioned on a great deal of shared training in discur-

sive and conceptual norms. Typically, however, the speaker’s and audience’s

expertise and interests align only superficially. As one speaker put it: “it’s

not clear that there’s anything in the intersection of what this person’s think-

ing of and what I know how to do.” But the seminar is far from pointless.

“It’s a bit like a beehive,” the same speaker volunteered a few days before his

talk: “Collecting nectar and pollen doesn’t benefit the specific bee so well,

but it’s important for the community.”

Indeed, seminar attendance is among the chief manifestations of the Anal-

ysis Group as a community. During the lecture, speakers constitute other

communities as well by framing their research in terms of recognizable prob-

lems and approaches. These larger communities, organized around partic-

ular lines of expertise, structure the kinds of reasoning that can be impli-

cated in a seminar’s “following” activity. Researchers develop expectations

about arguments, so that, as one explained, “If the argument is sort of well-

established,. . . it can be the case that people know where it’s going to break if

it’s going to break.” Specialisms also supply canonical terms and arguments,

dictating what claims can be made (and how) without further justification.

Specialized (and sometimes specialism-specific) ways of describing ob-

jects and rendering them on blackboards and other media are enculturated

through attending and presenting lectures: “you somehow learn how to talk,”

explained an experienced speaker. Seminar presenters pepper their talks with

remarks about “what everybody calls” certain objects or citations of “some

15In this sense, the mathematical seminar offers an alternative mode of lecturing to the
classical typology of lecturing proposed by Goffman (1981), featuring a form of “fresh
talk” that is neither presented nor understood as spontaneous but is simultaneously quite
distinct from memorized or strictly rehearsed lecture talk.
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standard assumptions” and note standard approaches even when not using

them. Speakers cite historical authorities in relevant subject areas and refer

to colleagues (including some present at the seminar) to personalize these al-

lusions. These references to people and concepts work to dissolve temporal as

well as professional boundaries. In an interview, one junior researcher spoke

undifferentiatedly of insights from a senior colleague gleaned, respectively,

from a conversation the previous week and from a body of that colleague’s

work from more than two decades prior. So, too, do old and new theorems

and approaches coexist in a seamless technical matrix on the seminar black-

board, thereby enacting an epistemology of mathematics that actively looks

past the context-specificities of its concepts.

Like the neuroscientists studied by Lynch (1985), subjects for this study

organized and narrated their research activity according to various projects.16

Subjects typically maintained three active projects concurrently, often with

many more investigations “on the shelf.” Projects were distinguished by their

set of collaborators, their animating questions, and the “tools” or methods

they employed. Their progress was marked in researchers’ accounts by the

gradual reification and conquest or circumvention of barriers they classified

as conceptual or (less often) technical. Projects rarely end decisively, but can

be disrupted by the relocation of a collaborator, stymied or made obsolete

by other researchers’ results, or stalled in the face of particularly stark con-

ceptual barriers. When a suitable partial result is obtained and researchers

are confident in the theoretical soundness of their work, they transition to

“writing up”. Only then do most of the formalisms associated with official

mathematics emerge, often with frustrating difficulty. Every researcher in-

terviewed had stories about conclusions that either had come apart in the

attempt to formalize them or had been found in error even after the paper had

been drafted, submitted, or accepted. Most saw writing-up as a process of

16The project-orientation of labor and narrative seems quite natural for neuroscientific
research, with its vast assemblages of researchers, technicians, and apparatus. Given the
stereotype of the lone mathematician and the importance of breakthrough stories in post-
facto accounts of mathematical innovation, however, the predominance of project-work in
mathematics is considerably more surprising.
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verification as much as of presentation, even though they viewed the mathe-

matical effort of writing-up as predominantly “technical,” and thus implicitly

not an obstacle to the result’s ultimate correctness or insightfulness.

Seminars have a special place in the temporal organization of mathematics

research. For presenters, presentations can drive the writing-up process by

forcing the speaker to cast recent results into a narrative that can be used

in both talks and papers, one that mobilizes both program and project to

construct an intelligible account of their work (cf. Ochs and Jacoby 1997).

Preparing a piece of work for public consumption requires the impartition

of an explanatory public logic in which ideas develop according to concrete

and recognizable methods. Seminars force researchers to articulate their

thinking in terms of a series of significant steps, unavoidably changing the

order and character of that thinking in the process by forcing it to conform

to a publicly viable model or heuristic. Finally, the members of the seminar

audience join—through the facts and circumstances of their presence—in the

constitution of a shared public logic that frames their own projects in turn.

Thus, the “following” that takes place in the seminar and extends to other

areas of mathematical communication consists of more than a mere sequen-

tial comprehension of inscriptions and allusions. “Following” structures the

production and intelligibility of entire programs of mathematical research, as

well as of the communities that engage in those programs. These entities are

built along figures of time and topic that underwrite the directed pursuit of

new mathematics.

4 An Ostentatious Medium

We have just depicted a seminar room subtly suffused with concepts and

allusions, but these invisible entities arise as little more than facile shorthands

for what takes place in the seminar. Rather than treating mathematical

communication as a trading zone for airy intellections, we aim to describe it in

terms of the pointings, tappings, rubbings, and writings that more manifestly

9



pervade our subjects’ work.17 In the seminar, these material constituents of

mathematics are concentrated around the person of the speaker and the

physicality of the blackboard.

There is nothing about the blackboard that is strictly necessary for a

mathematician. There are other means of writing equations for personal or

public display; other tokens on which to hang one’s disciplinary hat. Outside

of the seminar room, blackboards play a relatively limited (which is not to

say insignificant) role in most mathematicians’ daily work. The stereotype

of the chalk-encrusted mathematician is nearly as misbegotten as that of the

mathematician lost in his own mental world.

Nevertheless, mathematicians return to the blackboard. Introduced in

its present form as a large surface for pedagogic chalk writing near the turn

of the nineteenth century, its status as an iconic signifier for the discipline

is no accident.18 Blackboards dominate mathematics in two crucial spheres:

the classroom and the seminar. It is with blackboards that young mathe-

maticians learn the ins and outs of their art, and it is on blackboards that

established scholars publicly ply their newly-minted innovations. These twin

settings enshrine blackboard mathematics as an exemplary model that per-

vades all of mathematical practice, despite the blackboard’s ever-growing

appearance of obsolescence. Mathematics marked in dust, ink, and electri-

cal circuits alike owes key features of its form and content to the venerable

blackboard.19 It matters little that the full measure of the blackboard’s glory

17The observations in this section should be compared to Ochs, Jacoby, and Gonzales’s
(1994) discourse analysis of physicists’ use of “graphic space” to narrate their work and
to Suchman and Trigg’s (1993) analysis of whiteboard work among artificial intelligence
researchers.

18We can only note here that blackboards’ iconicity is vast. They are ubiquitous props
in portraits of theoretical researchers in mathematics and physics—on which, see Barthes
(1957, 104–105)—and a widely traded symbol of pedagogic authority and intellectual
inspiration, from Good Will Hunting to Glenn Beck. On the nineteenth-century pedagogic
history of the blackboard, see Kidwell et al (2008) and Wylie (2011).

19We do not have the space for a systematic discussion of competing technologies to
chalk and blackboards, which include alternative writing surfaces as well as tools for
projecting text and images. See, however, Barany’s (2010, 43–44 et passim) discussion of
these technologies with reference to adaptations that reinforce the disciplinary centrality
of the blackboard even when it is not in use.
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is confined to the narrow environs that lend profound influence to it. In the

pregnant space between chalk and slate there reposes a germ of the bursts

of inspiration, triumphs of logic, and leaps of intuition that dominate mind-

centered accounts of mathematics.20

As components of the mathematics department’s physical infrastructure,

blackboards are most prominent in seminar rooms and lecture theaters.

There, multiple boards are typically arranged to span the front of the room,

sometimes in sliding columns that allow the speaker to move the boards up

or down for writing and display (figure 1). Blackboards are also found in the

tea room used by faculty and graduate students and in individual professors’

and shared student offices.

Figure 1: An arrangement of sliding blackboards from the Analysis Group’s
seminar room.

Even as blank slates, blackboards are laden with meaning. As topical sur-

faces of potential inscription, they define the spatial outlay of lectures and

tutorials, guiding audience members in their choice of seats and occasionally

20It should be said that blackboards have been made predominantly out of materials
other than slate for most of their history. The paradigmatic relationship between black-
board and slate has, however, fundamentally shaped blackboards’ social meaning and
material development. Nor, for that matter, are blackboards always black. The seminar
boards at the heart of this study were a dark shade of green.
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demanding that the room be reconfigured to improve the board’s visibility.21

They presage the seminar’s rhythm, its steady alternation of marking, talk-

ing, moving, and erasing. They are perpetually at hand: even in conference

talks, whose frenetic pace tends to preclude blackboard exposition, they are

occasionally mobilized to expand on a point missing from a speaker’s pre-

pared slides; in the tea room, conceptual discussions sometimes find their

way to the room’s otherwise rarely-used boards; in offices, boards serve as

notepads for non-mathematical ephemera (such as telephone numbers) in

addition to mathematical jottings.

More features appear when blackboards are in use. They are big and

available: large expanses of board are visible and markable at each point in

a presentation, and even the comparatively small boards in researcher offices

are valued for their relative girth. Blackboards are common and co-present—

users see blackboard marks in largely the same way at the same time. They

are slow and loud: the deliberate tapping and sliding of blackboard writing

forces the sequential coordination of depiction and explanation at the board,

pacing and focusing speaker and audience alike. They are robust and reliable.

And, as noted above, they are ostentatious—so much so that colleagues in

shared offices expressed shyness about doing board work when office-mates

are present.

As a semiotic technology, the blackboard is as much a stage as a writing

surface. That is, boards constitute spaces for mathematical performances

that are not reducible to the speaker’s chalk writing. Speakers frequently

dramatized particular mathematical phenomena, using the board as a prop,

setting, or backdrop.22 Most seminar gestures, however, index rather than

21Suchman (1990, 315) notes a related phenomenon of whiteboards orienting researchers
in a shared interactional space in the more intimate settings of research discussions—a
phenomenon we also noted among the mathematicians in our study.

22These are gestures of the “iconic” class identified by Schegloff (1984, 275). Greif-
fenhagen (2008, par. 29–66) and Greiffenhagen and Sharrock (2005) make comparable
observations for logic instruction. Núñez (2008) offers a contrasting approach to gestures
in mathematical performance, seeking fundamental cognitive mechanisms underlying ges-
tures and metaphors used in mathematics. We thank an anonymous referee for pointing
out that these gestures, which are either audience-facing or board-facing, take place in
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indicate mathematical phenomena, exploiting the spatial configuration of the

blackboard to organize concepts and settings. That is, rather than depict par-

ticular phenomena such as taking limits, tracing paths, or comparing magni-

tudes, the vast majority of observed gestures pointed to those phenomena’s

past or present physical location in the blackboard record of the foregoing

exposition—indexing place rather than indicating properties or procedures.23

Proofs are explained with reference to their initial assumptions by pointing

at or tapping boards filled with lists of conditions, which are typically placed

at the tops of boards even when space remains at the bottom of the board

at which the speaker had been writing.

When an argument is invoked for the second time in a lecture, the

speaker’s hand can trace its earlier manifestation from top to bottom as

a substitute for re-reading or re-writing it. A question from the audience

frequently prompts the speaker to return a previously-worked sliding board

to its position at the time of its working in order to answer queries about the

writing thereon, even if no additional marks are made. It is not uncommon

to see the speaker’s eyes casting about the board for an earlier statement

before deciding how to proceed with the next. On multiple occasions, the

speaker gestured at a particular statement’s former place on the board even

after it had been erased, rather than reproduce the statement in another part

of the board for the purpose of referring to it.24

Specific board locations can carry mathematical significance. Parts of

a lecture context where nearly all writing is done while the speaker faces away from the
audience. Thus, the physical constraints of the board provide a stage that markedly limits
the timing and orientation of the gestures available to the speaker at any given point of
the lecture.

23In particular, this observation contrasts with the emphasis of Greiffenhagen and Shar-
rock (2005) on indicating gestures that enact or lend intuition to mathematical or logical
phenomena. Greiffenhagen (2008) notes both indexing and indicating gestures in the sense
we describe but does not indicate their comparative prevalence. Even in research settings,
we found board positioning to be a significant but easily-overlooked instrumental feature
of board inscriptions, an observation consonant with Suchman (1990, 315–316).

24These associations between particular gestures, inscriptions, and places in the
speaker’s “projection space” extend Schegloff’s (1984, 270, 281–282, et passim) analy-
sis of the gestural spatialization of speech and narration in the absence of media such as
blackboards.
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an expression can be separated visually, and corresponding terms are often

aligned or written over each other, even when this requires the writer to sac-

rifice some of the marks’ legibility. For instance, when a new bound is intro-

duced for an analytic expression, many speakers simply erased the bounded

expression and contorted their writing so that the new bound would fit in its

place. Similarly, when a proof hinged on the proper grouping or re-grouping

of terms in an expression, speakers exaggerated the physical spacing between

the relevant terms when writing them. Thus spatialized, statements can

be mobilized or demobilized by emphatic or obfuscatory gestures. Multiple

speakers, for example, mimed erasing an expression or simply blocked it with

their hands in order temporarily to exclude it from a consideration or to show

that an explanation strategically ignores it.

And what of the marks themselves? One rarely thinks of what cannot be

written with chalk, a tool that promises the ability to add and remove marks

from a board almost at will. The chalk’s shape, its lack of a sharp point, and

the angle and force with which it must be applied to make an impression, all

conspire to make certain kinds of writing impossible or impractical. Small

characters and minute details prove difficult, and it is hard to differentiate

fonts in chalk text. Board-users thus resort to large (sometimes abbreviated)

marks, borrow typewriter conventions such as underlining or overlining, or

employ board-specific notations such as “blackboard bold” characters (e.g. Z,

R, and C) to denote specific classes of mathematical objects.

Not every trouble has a work-around. Similar to a ball-point pen or pencil

on paper, chalk must be dragged along the board’s surface to leave a trace.

Entrenched mathematical conventions from the era of fountain pens, such as

“dotting” a letter to indicate a function’s derivative, stymie even experienced

lecturers by forcing them to choose between a recognizable dotting gesture

and the comparatively cumbersome strokes necessary to leave a visible dot

on the board.

The consequences of chalk for mathematics are not just practical but

ontological and epistemological. As Livingston (1986, 171) observes, mathe-
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matical proofs are not reducible to their stable records. Arguments are en-

acted and validated through their performative unfolding—an unfolding as

absent from circulable mathematical texts as it is essential to the production

and intelligibility of their arguments. Like the proofs it conveys, blackboard

writing travels only through rewriting. Unlike the marks in books, papers,

or slides, blackboard inscriptions can only ever unfold at the pace of chalk

sliding against slate. The intrinsic necessity of bit-by-bit unfolding in math-

ematical exposition is thus built into chalk as its means of writing.

This unfolding matches the “following” mode discussed above, and ex-

tends to the audience’s listening practices. Few audience members took

notes during the seminar. Most who did made only an occasional jotting

of a theorem or reference to pursue afterwards. But those who did take ex-

tensive notes endeavored to make a near-exact transcript of what the speaker

wrote on the board, reproducing a routine practice from their early math-

ematics coursework and training. The expectation of transcription obliges

the speaker to make the board’s text self-contained and accountable, leading

to a striking duplication of effort between writing and speech whose epitome

is the stereotypical speaker who reads his talk off the board as he writes it.

The practice of “following” thus impinges both on the global narrative of the

talk and on the textual sub-narrative confined to the speaker’s marks on the

board.

The mutability of blackboard writing, moreover, enacts a specifically Pla-

tonist ontology of mathematics. In this view, mathematical objects and sys-

tems have an independent existence that is separate from their descriptions,

and the same entity can be described in a variety of ways. On a blackboard,

lecturers frequently amend statements and definitions about mathematical

entities as their specific properties and constraints are made relevant by the

exposition or by audience interrogation. On such a medium, the fact that the

once-written text does not tell the final story about a mathematical concept

allows a potentially infinite variety of descriptions simultaneously to apply to

an object or situation under consideration. Where Suchman (1990, 315) and
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Suchman and Trigg (1993, 160) depict the board as the medium for making

objects concrete, we would stress the board’s corresponding ability to make

those concepts mutable without threatening their persistence as Platonic en-

tities. Thus, when a speaker returns later to add a necessary condition to a

definition or theorem-statement, it can be seen as an omission rather than

an error in the speaker’s argument—the condition can be made to have been

there all along at any such point as that anteriorized conceptual vestment is

required for the lecture to go forward.

The logic of blackboard writing governs mis-statements as well as omis-

sions. When the speaker reconsidered a statement and deemed it false, the

offending marks could be rubbed out without incident, preserving the verac-

ity of the blackboard record. The dusty traces of the statement’s removal

cue those few in the audience taking notes by pen or pencil as to which items

have been removed so they can appropriately modify their own transcripts.

In other situations, a statement was not necessarily false but, usually after an

audience enquiry, was judged to be either misleading or beyond the scope of

the presentation. In these cases, the speaker could cross out the statement,

removing it from the accountable portion of the talk but preserving it among

the lecture’s mathematical residues.

The availability of different modes of erasure also has narrative conse-

quences. Minor corrections can be made using the side of one’s hand to erase

small areas of the board while producing an audible thud that preserves the

ongoing sequence of words and board-sounds in the speaker’s story. Larger

erasures, however, must be made with a separate instrument whose use re-

quires the interruption of such discursive sequences—a desirable effect at the

end of a planned segment of a talk and an appropriate one where the speaker

must “reset” an argument after a significant lapse. The narrative break of

clearing a board establishes a board-sequence division that holds even when

a new board is available. Before embarking on a new part of an argument,

speakers sometimes clear multiple boards to avoid having to erase one in

mid-sequence. Conversely, if a narrative sequence overruns its allotted board
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space the speaker sometimes squeezes the remaining text in blanks on the

current board, rather than moving to a new one, often at the cost of legibility.

A final point interweaves the ontological, epistemological, and practical

significance of blackboards. In seminars and offices alike, blackboards are

used and experienced as places for translating complex, symbol-intensive

ideas into a manipulable, surveyable form. Figure 2 shows an office board

that had been used to work out a complicated expression from a published

paper. The board shows evidence of insertion, annotation, and erasure. At

the top, the researcher started to frame his ensuing writing by singling out

the expression from the paper he aimed to comprehend, labeling it with “To

show.” The expression of interest, the researcher realized in the midst of

copying it out, was not so far removed from the chain of reasoning used

to demonstrate it, so he moved to the center of the board and wrote (in

appropriate shorthand) the entire chain of reasoning. Here, as he described it,

the challenge was not to grasp a particularly complex series of manipulations,

but rather to understand a complicated array of indices as a whole.

Figure 2: A example of blackboard work from a respondent’s office. (For the
purposes of legibility the photograph has been digitally reduced to black and
white and inverted so that white chalk marks on the board appear as black
marks on a white background.)

After copying what he identified as the relevant expressions from the
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paper, the researcher proceeded to annotate it in terms of questions that

would need to be satisfied for the chain of reasoning to be valid and in

terms of techniques that could answer those questions. On the right of the

expression, the researcher attempts to aid his understanding by specifying

more features of the calculation than are present in the more general form

in the paper, qualifying this specification with the note “say.” Through

this blackboard work, a supposedly abstract datum of certified knowledge

becomes a self-identical yet pliable chalk instantiation. We were told that

only in this latter form could the researcher comprehend and hope to use

that expression, and yet that very form and all its advantages were stuck,

for all practical purposes, on the board.

5 Proofs and Reformulations

A dominant theme in sociological accounts of laboratory sciences is the re-

markable amount of labor and machinery—in Lynch’s (1990, 182) formula-

tion, taken-for-granted “preparatory practices”—devoted to producing texts

which can materialize and stabilize unruly natural phenomena in the form

of data, plots, and other representations—what Latour (1990) called “im-

mutable mobiles.” Mathematicians face, in a sense, the opposite problem:

the phenomena they study are not unruly enough. Mathematicians thus

spend remarkable amounts of labor to materialize their objects of study, but

with the goal of coaxing those objects to behave in some new way, rather

than disciplining them to hold some stable and circulable form.

There are thus two fundamentally different kinds of mathematical texts.

There are papers and reports akin to journal articles in the natural sciences,

but there are also tentative, transitory marks that try to produce new orders

out of old ones (with a crucial stage of disorder in between). Blackboards,

we have suggested, are the iconic site of this second sort of text-making. Like

the natural phenomena scientists try to tame, blackboard writing does not

move well from one place to another. This spatial fixity contrasts with the
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flexibility afforded by blackboard writing’s seemingly vast openness to anno-

tation, adaptation, and reconfiguration. Symbols and images can be erased,

redrawn, layered, counterposed, and “worked out” on the board’s surface.

Such “immobilized mutables” form a constitutive matrix for mathematical

creativity.

This “blackboard” way of working with texts is not, therefore, limited

specifically to board writing. Asked, while away from his office, to describe

his work space, one interviewee began with the piles and piles of paper cover-

ing his desk (figure 3). Populating those piles are reprints of articles, teaching

notes, and, most importantly, page after page of scrap paper. The inscrip-

tions of mathematical research, while implicating blackboards, whiteboards,

computers, and other media, seem mostly to subsist in the sort of notes that

suffuse the spare sheets of paper from our respondent’s desk.

Figure 3: One respondent’s paper-covered desk.

Scrap paper writing shares many characteristics with chalk writing. Both

rely on augmentations, annotations, and elisions as concepts are developed

through iterated inscriptions designed to disrupt the formal stability of math-

ematical objects. Such iterated efforts at proving, most of which are seen as

unsuccessful, produce a long paper trail.25 One would expect this scrap pa-

25Latour (1990, 52) identifies the production and legitimation of such cascades of in-
scriptions as a decisive puzzle for the anthropology of mathematics.
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per trail, at least, to be somewhat more mobile than blackboards. Not so:

for the purposes of research, the process of writing appears to matter more

than the record it produces. Scrap paper is almost never mobilized beyond

its initial use. One respondent explained that “I don’t tend to look back very

much.” Another has a policy of saving notes until he no longer recognizes

the calculations, but confesses that he too rarely looks back at them. “I do a

lot of stuff in my head,” a third researcher recounted, and his research notes

reflected this self-conception by rarely travelling beyond the sites in which

they were produced.

Merz and Knorr Cetina (1997, 87, 93) describe mathematical work as a

process of “deconstruction,” where equations from problems are successively

transformed through a variety of techniques until they yield a new theoretical

insight. One of our subjects described the process perfectly:

I’m going to keep doing the calculations again, only now trying to

look for terms of this form. . . . I have an ocean of terms like this,

and the problem in some sense is how do you put them together

so that they make some sense.

Consider how terms are put together in the research notes excerpted in

figure 4. This researcher’s deconstruction begins with the operator L, whose

effect on a function u is first written compactly on the left-hand side of

the equation in his notes. (The brackets identifying this expression as Lu

were added during the course of an interview as the researcher explained his

inscriptions.) On the right there appears a nearly-identical expression, with

a space opened up between the ∂j and the rest of the expression’s summand

(that is, ajk(x)∂ku). Brackets beneath the two sets of symbols identify them

as members of specific families of mathematical objects, respectively S1
1,0 and

L∞S1
1 , and the latter identification merits a written-out speculation about a

technique (“symbol smoothing”) and a desired outcome (inversion). All the

while, these textual tokens are experienced and described as ideas. In this

example:
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We have some variable coefficient operator [L] that looks like the

Laplacian, and so . . . [we] split it up into a sum of pieces, I guess

a product of two things. In my case, the first product . . . is just

a derivative, and . . . the second factor, less is known about.

Figure 4: An equation from an interviewee’s research notes.

In addition to being regrouped, symbols can be transformed according to

mathematical principles and with the help of auxiliary equations and images.

Notations and framings are often adapted to particular approaches. “There’s

a lot of notation, and it does help to go back and forth between them,” offered

one researcher. Moving between different variables and expressions can coax

a troublesome formulation to resemble a familiar one or allow researchers to

break a problem into smaller parts. Annotations can also declare aspects of

a problem to be difficult, promising, or solved. In one particularly dramatic

example of this, an interviewee recounted how

I put that in a red box because I was very excited when I realized

that. . . . In my mind it moved us closer to completion of the

project.

As concepts are continually re-materialized, salient details are expanded

or omitted, much as they would be on the blackboard. One researcher’s notes

had the word “factor” in place of a positive constant whose particular value

was not relevant at that stage of the investigation. He expected that he might

ultimately “see sort of which ones [factors] are ones that are helping you prove

your result and which ones are the obstacles,” and could then manage the
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obstacles separately. A process described by multiple respondents involved

successive attempts to develop and refine a proof, with each attempt aimed

at managing a new set of constraints after one is convinced of the proof’s

“main idea.”

One should not get the impression, however, that the only papers of sig-

nificance in a mathematician’s office are scrap papers. A large amount of

space is devoted to storing books and articles that contain mathematics in

its most stable and circulable form. These are achieved through the “writ-

ing up” process, which (in our subjects’ consensus) takes place strictly after

the genuinely creative part of mathematical research—though all admitted

that the form and often the substance of a result were liable to change sub-

stantially during or even after writing up. The work of writing up deserves a

separate study—parts of it are addressed lucidly by Rosental (2008) and Merz

and Knorr Cetina (1997). For our purposes, we would like to expand upon

the inverse phenomenon: the less-recognized reading practices that convert

“written-up” prose into a form usable in mathematical research—practices

that might be called “reading down.”

There is a crucial difference between mathematical papers and reports of

scientific experiments. Where the latter are understood to depend on the

credible reporting of experimental outcomes, the former are seen in principle

to contain all the apparatus required for their verification. That is, where

scientists must describe experiments and plot data, mathematicians are ex-

pected to reproduce in meticulous detail each of the novel rational steps

behind their conclusions. The time and thought required to understand and

verify each such detail makes mathematical papers subject to similar issues of

trust, credibility, and reproducibility as have been described for the natural

sciences, but the presentation of mathematical texts as (in principle) self-

contained means that their circulation and deployment can have a decidedly

different character.

In particular, mathematical texts present readers with two kinds of use-

able information. They establish lemmas and theorems that can be invoked
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as settled relations between specific mathematical phenomena, and they

present methods and manipulations that can be used by others to estab-

lish different results. Researchers access others’ papers through preprint and

citation databases, and in smaller specialisms researchers will simply send

preprints to a regular list of colleagues. They approach their stream of avail-

able papers using successive filters to identify where the two foregoing types

of information most relevant to their research will be found. The process of

perusing a database, for instance, might start with reading the titles of arti-

cles in relevant subject areas, the abstracts of articles with relevant titles, and

so forth. The mathematicians with whom we spoke almost never read papers

in their entirety—and certainly not with the goal of total comprehension.

When information from a paper is deemed immediately relevant to an

ongoing project, it is finally read for its technical detail. Rather than attempt

to digest every claim, however, readers try to identify concepts, formulations,

and conclusions that are recognizable in the context of their own work. These

identifications begin a process of re-rendering papers’ key passages in terms

readers hope may ultimately advance their instrumental research goals.

This process of reformulating official papers into research instruments can

span several media. A single page of one researcher’s notepad, shared during

an interview, visibly manifested a series of translations from an article, to

penned equations, to an email, to spatial gestures, and then to further writ-

ings. Interviewees reported experiencing mathematical concepts in terms of

formalisms, properties, or operations. One described an equation by placing

invisible terms in the air, one by one, in front of him. “I’ve written it down

so many times,” he explained, that he instinctively saw “the first order terms

appear here and the second order terms there.” Another used a box of tea on

his desk as an impromptu prop for explaining a source of theoretical conster-

nation from a recent effort. Different modes of mathematical cognition must

necessarily interact to produce the transformations that bring about original

proofs and theorems—transformations that would not generally be possible

within a single framework of representation. Moreover, they must interact in
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a way that enables the coordination of mathematical understanding between

different researchers in a variety of settings.

This leaves mathematical ideas in a strange position. Particular and

ideosyncratic inscriptions and realizations are utterly central to the prac-

tice of mathematics. Paradoxically, mathematical inscriptions (especially on

blackboards) work in ways that specifically (and, as we have argued, mis-

leadingly) assert the opposite—that ideas somehow do not depend on the

ways in which they are mobilized. The flexibility of mathematical represen-

tations obscures the socio-material coordination necessary to move concepts

so freely from one form to another. Mathematical work rests on self-effacing

technologies of representation that seem to succeed in removing themselves

entirely from the picture at the decisive junctures of mathematical under-

standing. It is only by virtue of these disappearing media that one can be

said to understand a concept itself rather than its particular manifestations.

Except when one cannot. Like scientific instruments, mathematical rep-

resentations are subject to “troubles,” flaws, and shortcomings (see Lynch

1985). The vast majority of attempts to use material proxies in one form or

another to elucidate a concept are not counted as successes within a program

of research. Seminars are among the rare displays of mathematical semiosis

in a research setting where it is understood and expected that the signs will

work. Mathematical research is marked by the constant struggle to create

viable signs. As one of our subjects put it:

It’s largely having a model and trying to get the new thing to fit

into the old model, and at certain points that simply fails, and

at that point you sort of mess around and think about . . . the

old one a slightly different way, sometimes just calculating [and]

seeing what comes out . . . .
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6 Representation in Mathematical Practice

In most people’s experience, mathematics is a static body of knowledge con-

sisting of concepts and techniques that are the same now as they were when

they were developed hundreds or thousands of years ago, and are the same ev-

erywhere for their users and non-users alike. Little would suggest that there

are corners of mathematics that are changing all the time, where as-yet un-

thinkable entities interact in a primordial soup of practices that constantly

struggle to assert their intelligibility. Such is the realm and such are the

objects of mathematical research.

The relationship between mathematicians and their objects of study is

anything but straightforward. There is no mathematical concept whose for-

mal immediacy or self-evidence stands beyond media and mediation. As a

science of ideals, mathematics rests on the capacity of mathematicians to

legitimize and manipulate particular representations of mathematical phe-

nomena in order to elucidate rigorous mathematical knowledge.

In contrast to well-worn accounts of representation in the natural sciences,

the story of mathematics is less about the hidden work of taming a natural

phenomenon according to ideals than about the very public work of crafting

those putatively independent ideals from their always-already-dispensable

material manifestations. We have proposed chalk as both a literal and a

figurative embodiment of that work. As a physical means of representation,

chalk and blackboards entail a potent but highly circumscribed means of

publicly materializing mathematical concepts. Their mode of representation,

moreover, defines and influences mathematical practices far beyond those

relatively limited circumstances where the mathematician actually has chalk

in hand.

Mathematical writing and the mathematical thinking that goes with it

are markedly dependent on the media available to the mathematician. Math-

ematical work traces the contours of its surfaces—there is little that is think-

able in mathematics that need not also be writeable, particularly in the
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mathematics that is shared between mathematicians.26 Blackboards, paper,

and other media make certain forms of writing, and hence certain kinds of

arguments and approaches, more feasible than others. Without having to as-

sert that the limits on mathematical inscription definitively foreclose many

potential truths from ever being described and accepted mathematically, it

is manifestly clear that those limits can and do imply corresponding con-

straints on the lived and daily course of mathematical research. As De Millo,

Lipton, and Perlis (1979, 274–275) put it, “. . . propositions that require five

blackboards or a roll of paper towels to sketch—these are unlikely ever to be

assimilated into the body of mathematics.”

Even when a viable constellation of representations is found, the mathe-

matician’s work is not done. These multifarious semiotic entities must then

be made accountable to the equations, syllogisms, and arguments found in

the published literature that compose the official corpus of mathematical

knowledge—a project for which they are poorly adapted. A staggering por-

tion of mathematicians’ work goes into decoding published papers to cre-

ate functional intuitions and understandings and, conversely, into encoding

those intuitions in the accountable forms in which they will be credited as

genuine. This is why chalk and seminars are so important. They give re-

searchers shared partial access to what is so obviously missing from official

accounts of completed work: namely, the experienced material performance

of mathematics in action. The tension between circulation and application

in mathematics is a real one. Mathematical ideas are not pre-given as the

universal entities they typically appear to be. The most important features

of mathematics can be as ephemeral as dust on a blackboard.

26Rotman (1993, x ) likewise asserts an interweaving of thought and inscription, though
his focus is on the semiotics of mathematical abstractions rather than the paticularities of
mathematical research and communication.
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