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ABSTRACT

This paper accounts for the intercontinental elaboration of French mathematician
Laurent Schwartz's theory of distributions in the years immediately following World
War Il by tracing how mathematicians explained the theory to each other, advanced
new interpretations, and reconciled existing ones. Situating distributions in mathe-
maticians’ changing contexts of funding, travel, and publication, especially in con-
nection with the postwar reconstruction of international science, | argue that wordplay
and suggestive comparisons—often termed “abuses of language"—helped tie com-
munities of scholars together across disparate geographies and fields of study.
Material limits and linguistic ambiguity, here, offered important resources for asserting
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relevance and unity in a fragmented and heterogeneous discipline. | show in particular
how reinterpretations and puns of the calculus technique of integration by parts helped
advocates of Schwartz's theory create a far-reaching community of students and
researchers that was itself partially integrated—with distributions’ scholars believing
themselves to be using a common theory while understanding and using that theory
in considerably different (if sometimes mutually recognizable) ways. If exponents of
modern mathematical research and pedagogy tend to emphasize settled theories and
stabilized innovations, the history of these activities demands a converse emphasis on
the variable and ongoing labor required to reconcile techniques and concepts—a labor
that often hinges on theories’ instability, pliability, and susceptibility to play.

KEY WORDS: mathematics, postwar, globalization, theory of distributions, Laurent Schwartz,
wordplay, heterogeneous theory

THEORY ON THE MOVE

No theory is born universal, and even the most monumental breakthroughs
start small. In the winter months of 1944-1943, as the Second World War waned
in Europe, a young French mathematician named Laurent Schwartz set out to
rewrite the basic principles of mathematical analysis with what he soon termed
his “theory of distributions.”! In July 1946, Schwartz lectured for four hours on
his “great progress” with the theory to an approving audience of his countrymen,
an eccentric collective of radical reformers who published under the pseudonym
Nicolas Bourbaki.? A year later, Schwartz confided to his wife his unease with
the “excessive success” his theory had found in Copenhagen, Denmark: “all the
same, [the theory] is not Jesus Christ, and the compliments of the three Magi
from the world over unsettle me a lictle; wasn’t he later crucified?”

In 1949, Schwartz took his first ever airplane trip on his way to lecture on his

theory in Vancouver, Canada. The next summer, he received a prestigious

1. Schwartz’s own retrospective narrative of his theory’s origins is in MGC, chap. 6. For
a critical appraisal and reconstruction of the first half-decade of this story, see BPL.

2. Cartan to Weil, 19 Jul 1946, in Michele Audin, ed., Correspondance entre Henri Cartan et
André Weil (1928-1991) (Paris: Société Mathématique de France, 2011), 118. On Bourbaki, see
Liliane Beaulieu, Bourbaki: Une histoire du groupe de mathématiciens frangais et de ses travaux
(1934-1944) (PhD dissertation, Université de Montréal, 1989); Maurice Mashaal, Bourbaki: Une
société secréte de mathématiciens (Paris: Editions Pour la Science, 2002).

3. Laurent to Marie-Hélene Schwartz, § Nov 1947, Schwartz family archives, reproduced in
Claudine Schwartz, “Autor des premiers travaux de Laurent Schwartz sur les distributions,”
Gazette des mathématiciens 113 (2007): 112—18, on 117-18. See also PLS, 134.
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Fields Medal at the International Congress of Mathematicians in Cambridge,
Massachusetts, where his theory was compared to “Descartes’ development of
the analytic geometry” and his earliest paper on distributions was hailed as
“one of the classical mathematical papers of our times.”® In 1954, an elder
statesman of Argentine mathematics all but rolled his eyes at the “enthusiasts
of Lorenzo Schwartz’s theory,” a group that included many of his continent’s
leading young mathematicians.” By the end his theory’s first decade, Schwartz
had traveled tens of thousands of miles, crisscrossing continents, and his theory
had traveled even farther. Scholars studied and taught variations of the theory
in Europe, the Americas, Asia and Africa, across the Western and Eastern
Blocs, and in many parts of the non-aligned world. Schwartz went on to be
a leading figure in French and international mathematics, and distributions
became a foundational element of postwar scholarship in several broad areas of
mathematics and theoretical physics.

This kind of itinerary, for a young and previously little-known mathema-
tician or his newborn theory, would have been unthinkable before 1945. The
speed and, especially, the intercontinental geographical span over which math-
ematicians learned of and took to the theory defy comparisons to prewar
precedents in mathematics.® After the Second World War, however, mathe-
maticians and their sponsors reshaped the discipline’s institutions, practices,
problems, and pedagogy. Stories like those of Schwartz and distributions
became extreme examples of a normal pattern, rather than startling exceptions.
Mathematicians pursued theoretical research in more and farther-flung places,
forging and refashioning connections between the discipline’s global centers
and peripheries.” Their discipline’s transformed scales depended on newly

4. Harald Bohr, “Address of Professor Harald Bohr,” in Graves et al., eds., Proceedings of the
International Congress of Mathematicians, Cambridge, Massachusetts, U.S.A. 1950 (Providence, RI:
American Mathematical Society, 1952), 127-34, on 130, 133.

5. Julio Rey Pastor, “La matemadtica moderna en Latino América,” in Segundo Symposium sobre
Algunos problemas matemadticos que se estin estudiando en Latino America, Villavicencio-Mendoza
21-25 julio 1954 (Montevideo: Centro de Cooperacion Cientifica de la UNESCO para América
Latina), 9—30, on 15-16.

6. In this respect, especially in terms of research and collaboration, mathematics blossomed
comparatively late among the “international” sciences, despite its oft-presumed universality and
relative independence of many of the material constraints of other sciences. See DPM, 9—14. This
work also develops the historiographical distinction between “international” and “intercontinen-
tal” science.

7. See DPM; Amy Dahan Dalmedico, “L’essor des Mathématiques Appliquées aux Etats-Unis:
L’impact de la seconde guerre mondiale,” Revue dhistoire des mathématiques 2 (1996): 149-213;
Karen H. Parshall, “Marshall Stone and the Internationalization of the American Mathematical
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available means of travel and communication and the new institutional con-
nections they allowed, but also on new ways of studying and understanding
mathematics that reached to the very words and principles with which math-
ematicians articulated their theories. Amidst changing geographies and infra-
structures, mathematicians debated the nature of mathematics itself—whether
it was unified and structured, adaptable and applied, absolute or arbitrary,
organic or artificial.® What it meant to do mathematics and the means of
doing it transformed in tandem, with manifold consequences for mathemati-
cians’ ideas and discipline alike.

This essay asks how mathematicians’ means shaped their meanings, and
how meanings shaped means. I explain the continent-crossing first decade of
the theory of distributions by situating the theory’s great variety of meanings
and interpretations in mathematicians’ shifting rhetorical, institutional, mate-
rial, and other contexts—that is, in mathematicians’ variegated means and
conditions for developing and sharing theories. Indeed, I argue that the mul-
tiplicity of distributions” meanings was essential for the theory’s rapid spread
across these contexts. Such multiplicity manifested both in the theory’s broad
conceptual adaptability and in its rhetorical pliability, with disparate interpre-
tations finding common voice in fruitfully ambiguous formulations. Changing
means of scholarly exchange and changing approaches to mathematical argu-
ment and understanding allowed scholars spanning vast distances to adopt and

Research Community,” Bulletin of the American Mathematical Society 46, no. 3 (2009): 459-82;
Karen Hunger Parshall, ““A New Era in the Development of Our Science’: The American Math-
ematical Research Community, 1920-1950,” in David E. Rowe and Wann-Sheng Horng, eds.,
A Delicate Balance: Global Perspectives on Innovation and Tradition in the History of Mathematics,
a Festschrift in Honor of Joseph W. Dauben (Basel: Birkhduser, 2015), 275-308. On formal efforts
toward international mathematical organization, see Olli Lehto, Mathematics Without Borders:
A History of the International Mathematical Union (New York: Springer, 1998). On the earlier
history of internationalization in mathematics, focused principally on Europe, see Karen H. Parshall
and Adrian C. Rice, eds., Mathematics Unbound: The Evolution of an International Mathematical
Research Community, 1800-1945 (Providence, RI: American Mathematical Society, 2002).

8. Leo Corry, Modern Algebra and the Rise of Mathematical Structures, 2nd ed., (Basel:
Birkhduser, 2004 [1996]); Amy Dahan Dalmedico, “An image conflict in mathematics after
1945,” in U. Bottazzini and A. Dahan Dalmedico, eds., Changing images in mathematics: From the
French Revolution to the new millennium (London: Routledge, 2001), 223-53; David Aubin, “The
Withering Immortality of Nicolas Bourbaki: A Cultural Connector at the Confluence of Mathe-
matics, Structuralism, and the Oulipo in France,” Science in Context 10, no. 2 (1997): 297-342;
Christopher J. Phillips, “In Accordance with a ‘More Majestic Order’: The New Math and the
Nature of Mathematics at Midcentury,” Isis 105, no. 3 (2014): §40—63; Alma Steingart, Conditional
Inequalities: American Pure and Applied Mathematics, 19401975 (PhD dissertation, Massachusetts
Institute of Technology, 2013).
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reconcile a wide range of interpretations of the theory of distributions: con-
ceptual travel facilitated geographic travel and vice versa. Distributions’ scho-
lars cast the theory as a banal trick for applied calculations, a difficult
intervention in the recent theory of topological vector spaces, a profound
realignment of established methods, a radical departure from familiar concepts,
and many things in between. They found common ground through metaphors
and wordplay, textbooks and abstracts, rhetoric and representation.

The next section places this central finding about heterogeneity and recon-
ciliation within long-running conversations among historians and sociologists
of science regarding expertise, communication, and theoretical knowledge. 1
then set the scene for Schwartz’s intervention in the history of functions and
the calculus with a brief introduction to the so-called Heaviside and Dirac
functions, which were central in several early accounts of Schwartz’s theory.
After characterizing Schwartz’s first presentation of the theory of distributions,
I explain the context and implications of his use of wordplay and attention to
language, with particular reference to the reframing of mathematics associated
with Bourbaki. The mathematical technique of integration by parts, here,
exemplifies Schwartz’s approach while furnishing an apt description of the
kind of social and intellectual consolidation that this approach allowed. The
remaining sections detail how the theory of distributions spread to new geo-
graphic and intellectual milieux in terms of the foregoing considerations, in
relation to new institutional, geopolitical, and other conditions. I conclude by
revisiting the problems of meaning and ambiguity for histories of theoretical
knowledge, arguing for the central place of historical actors’ ongoing labor of
partial integration.

EXPERTISE, EXCHANGE, AND THE PLURALITY OF THEORY

A theory can be many things to many people, but to each of a theory’s users
and exponents it tends to be, in itself, just one thing. Different theorists with
different emphases, framings, priorities, and commitments can agree or dis-
agree, adopt or adapt, understand or misunderstand, all while believing them-
selves be engaging one and the same theory. This tension between a unitary
conception of scientific knowledge and its plural manifestation has been funda-
mental to the history and sociology of science. Viewed in social context, theories
are not just collections of definitive claims, premises, methods, and implications,

but also personal and institutional relationships, ways of simultaneously
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organizing both knowledge and its producers. Often, theories and associated
technical systems join together actors across a spectrum of social roles and
positions, giving rise to identifiable patterns relating social structure to theoret-
ical understanding.” Even actors in comparable social circumstances must rec-
oncile divergent piecemeal understandings, and I have elsewhere argued that this
kind of medium-dependent labor is fundamental to both the social and intel-
lectual practice of present-day mathematical research.!”

Informed by this work, I take the perspective here that theories are best
understood as social systems built around relationships of partial mutual
understanding, and theoretical labor is best interpreted in terms of generating
and reconciling senses of mutual understanding that underwrite those relation-
ships. I mean this in a strong sense: where used as an analytic term, one may (in
principle) read “theory of distributions” as “social system built around relation-
ships of partial mutual understanding of distributions.” By placing social rela-
tionships, rather than conceptual objects, at the center of the analysis, this view
of mathematical theories reflects a relativist epistemology of mathematics.'!
Since the only empirical basis for establishing mutual comprehension is the
social activity it licenses, my historical interpretation of the past’s mathematical
understandings shall stress how claims about ideas and methods constituted or
transformed communities of interaction.

Knowledge of distributions was highly differentiated, ranging from recog-
nition to familiarity to connoisseurship to interactional competence to pedagog-
ical competence to research expertise or virtuosity. Though many found the
theory of distributions easier to learn than other theories of comparable reach
and novelty, to use distributions in one’s research could still require weeks or
months of special study on top of years of relevant specialized training. But to

9. E.g., what Donald MacKenzie has called the “certainty trough” of trust in technical
systems. See Donald MacKenzie, Inventing Accuracy: A Historical Sociology of Nuclear Missile
Guidance (Cambridge, MA: MIT Press, 1990), 370—72. MacKenzie discusses the certainty trough
for mathematical proof, specifically, in Mechanizing Proof: Computing, Risk, and Trust (Cam-
bridge, MA: MIT Press, 2001).

10. Michael J. Barany and Donald MacKenzie, “Chalk: Materials and Concepts in Mathe-
matics Research,” in Catelijne Coopmans, Michael Lynch, Janet Vertesi, and Steve Woolgar,
eds., Representation in Scientific Practice Revisited (Cambridge, MA: MIT Press, 2014), 107—29.
See also Alma Steingart, “A group theory of group theory,” Social Studies of Science 42, no. 2
(2012): 185—213.

11. See Michael J. Barany, “Of Polyhedra and Pyjamas: Platonism and induction in meaning-
finitist mathematics,” in Elizabeth de Freitas, Nathalie Sinclair, and Alf Coles, eds., Whar is
a mathematical concept? (Cambridge: Cambridge University Press, 2017), 19-35.
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appreciate distributions—to “get a sense” of the theory—required little more
than experience with undergraduate calculus, an experience professional math-
ematicians could readily take for granted. The theory’s adoption depended on
communities of mathematicians, physicists, and engineers with substantially
different kinds of understanding being able to interact fruitfully in a range of
settings and for a variety of purposes. If the theory of distributions appeared as
just one thing, it owed this appearance to the vast and circumstance-dependent
labor required to see unity in the great diversity of texts and contexts, of knowl-
edges and practices, that came to be associated under its banner.

Historians and sociologists of science may recognize this kind of claim
under such familiar rubrics as “trading zones” or “boundary objects.”'* When-
ever distinct communities converge around common projects, they translate
their different interests and understandings by way of entities that can tie the
communities together while sustaining different meanings for each. As with
diagrams or formulae in physics or finance, the formalisms scholars used to
represent distributions succeeded as bridges between communities because
their respective users could understand them very differently, while continuing
to hold them in common.'? Moreover, just as some kinds of data, specimens,
or apparatus in the natural sciences travel better than others, so too do some
loci of representation in theoretical disciplines like mathematics.!4 Here, the
established historiography on the transformation of scientific knowledge
through textual transmission, translation, and interpretation helps to explain
both the pluralization and consolidation of distributions as a theory rooted in

polysemic renderings of mathematical phenomena.'®

12. Peter Galison, Image and Logic: A Material Culture of Microphysics (Chicago: University of
Chicago Press, 1997), chap. 9; Susan Leigh Star and James R. Griesemer, “Institutional Ecology,
‘Translations’ and Boundary Objects: Amateurs and Professionals in Berkeley’s Museum of
Vertebrate Zoology, 1907—39,” Social Studies of Science 19 (1989): 387—420.

13. E.g., Galison, Image and Logic (ref. 12); David Kaiser, Drawing theories apart: The dispersion
of Feynman diagrams in postwar physics (Chicago: University of Chicago Press, 2005); Donald
Mackenzie, “An Equation and Its Worlds: Bricolage, Exemplars, Disunity and Performativity in
Financial Economics,” Social Studies of Science 33, no. 6 (2003): 831-68; Paul Erickson, 7he World
the Game Theorists Made (Chicago: University of Chicago Press, 2015).

14. Cf. Peter Howlett and Mary S. Morgan, eds., How Well Do Facts Travel? The Dissemi-
nation of Reliable Knowledge (Cambridge: Cambridge University Press, 2010).

15. E.g., Catherine Goldstein, Un théoréme de Fermat et ses lecteurs (Saint-Denis: Presses
universitaires de Vincennes, 1995); Caroline Ehrhardt, Itinéraire d’un texte mathématique:
Réelaborations d’un mémoire de Galois au XIXe siécle (Paris: Hermann, 2012); Marwa S. Elshakry,
“Knowledge in Motion: The Cultural Politics of Modern Science Translations in Arabic,” Isis 99,
no. 4 (2008): 701-30; James Secord, “Knowledge in Transit,” Isis 95, no. 4 (2004): 654—72.
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Distributions’ interpretive pliability has haunted both historical discussions
of the theory itself and the theory’s limited historiography. The history re-
ported here turns on several examples of methods and concepts being identi-
fied as distributions in disguise, a stipulation aided by specific linguistic
practices discussed below. The first extended study of the history of distribu-
tions focused on the massive tangle of conceptual and genealogical relation-
ships among the many ideas and practices that came to be associated with
distributions in the theory’s early years.'® For Schwartz’s critics, the range of
apparently equivalent approaches exogenous to his own was evidence that the
theory was merely derivative—consisting of old ideas in new clothing and
reflecting differing national or personal styles of mathematics.!” Schwartz’s
defenders (including Schwartz himself), conversely, painted the theory’s uni-
fication of so many exogenous approaches as evidence of its profundity, while
bootstrapping a constituency for the theory of distributions by laying claim to
those already versed in the other approaches.'® Recent scholarship has followed
the theory between different scholarly communities to draw conclusions about
those communities’ philosophical values or forms of collective engagement.'”

At the same time, both historical actors and historians have tended to treat
the theory of distributions as just one thing, albeit one found in many guises.
Seeing unity, like recognizing difference, must be understood as the result of
situated interpretation. The same precept applies to what a theory is and what

16. LPD. See also John Synowiec, “Distributions: The Evolution of a Mathematical Theory,”
HM 10 (1983): 149-83.

17. E.g., Salomon Bochner, Review of Laurent Schwartz, Théorie des distributions, vols. 1 and
2, Bulletin of the American Mathematical Society §8, no. 1 (1952): 78-85; Jean-Michel Kantor,
“Mathematics East and West, Theory and Practice: The Example of Distributions,” MI: 39—46;
S. Kutateladze, “Some Comments on Sobolev and Schwartz,” MF: s1.

18. E.g., Jean Dieudonné, Review of LPD, AMM o1, no. 6 (1984): 374—79; Colette Anné,
Jean-Pierre Bourguignon, Claude Viterbo, eds. Supplément an numéro 98 de la Gazette des
mathématiciens, 2003; MGC, chap. 6; Peter Lax, “The Reception of the Theory of Distributions,”
MI: 52.

19. Klaus-Heinrich Peters, “Mathematische und phinomenoligische Strenge: Distributionen
in der Quantenmechanik und -feldtheorie,” in Karl-Heinz Scholte and Martina Schneider, eds.,
Mathematics meets physics: A contribution to their interaction in the 19th and the first half of the 20th
century (Frankfurt am Main: Verlag Harri Deutsch, 2011), 373-93; Peters, Der Zusammenhang von
Mathematik und Physik am Beispiel der Geschichte der Distributionen: Eine historische Untersuchung
iiber die Grundlagen der Physik im Grenzbereich zu Mathematik, Philosophie und Kunst (PhD
dissertation, Hamburg University, 2004). PLS; Anne-Sandrine Paumier, “Le séminaire de
mathématiques: Un lieu d’échanges défini par ses acteurs. Incursion dans la vie collective des
mathématiques autour de Laurent Schwartz (1915—2002),” Philosophia Scientiae 19, no. 2 (2015):

171-93.
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it means to know a theory. The history of distributions hinges on what it
means to know zhe same thing differently across times and places.

FUNCTIONAL DISTINCTIONS

One way—Ilikely the most common one historically—to understand the the-
ory of distributions is as a generalization of two notions fundamental to
calculus and mathematical analysis: functions and differentiation. In this
respect, Schwartz joined a tradition dating to the first century of Newton’s
and Leibniz’s calculus.?® By the mid-eighteenth century, Leonhard Euler
established a widely followed interpretation of functions as relations between
independent and dependent variable quantities, with differentiation producing
the rate of change of a dependent variable with respect to a specified indepen-
dent variable—the function’s derivative.”! Most subsequent interpretations of
functions and differentiation followed suit, reinterpreting variables, rates of
change, and other terms and concepts accordingly.

History’s various interpreters of functions and differentiation dwelled, in
particular, on the relative foundational statuses of different forms of represen-
tation, ranging from graphs and diagrams to explicit or implicit formulae to
different kinds of symbolic expressions of abstract relations.** As mathemati-
cians offered new definitions of the central terms of the calculus, this history of
adaptation and reinterpretation was itself an important feature of their rhetor-
ical and conceptual interventions: by the nineteenth century, mathematicians
recognized the calculus as a subject whose changing fundamental notions
manifested the changing state of mathematics itself. Sometimes this history
was a measure of mathematicians’ progress.*> Other times, as for Emile Picard
at the opening of the 1920 International Congress of Mathematicians, “ana-
lyzing the subtlest recesses of the idea of a function” represented the cloistered

20. LPD. See also J. R. Ravetz, “Vibrating Strings and Arbitrary Functions,” in 7he Logic of
Personal Knowledge, (London: Routledge, 1961), 71-88; A. P. Youschkevitch, “The Concept of
Function up to the Middle of the 19th Century,” AHES 16, no. 1 (1976): 37-85; Garrett Birkhoff
and Erwin Kreyszig, “The Establishment of Functional Analysis,” HM 11 (1984): 258-321.

21. Henk J. M. Bos, “Differentials, Higher-Order Differentials and the Derivative in the
Leibnizian Calculus,” AHES 14 (1974): 1-90.

22. E.g., Michael J. Barany, “God, King, and Geometry: Revisiting the Introduction to
Cauchy’s Cours d’Analyse,” HM 38, no. 3 (2011): 368-88.

23. See Joan L. Richards, “Historical Mathematics in the French Eighteenth Century,” Isis 97,
no. 4 (2006): 700-13.
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predilections of “incorrigible idealists,” whose attitude Picard found untenable
after the Great War.24

For most theorists of differential equations since Euler, functions and differen-
tiation presented a persistent dilemma. A perfectly valid (even useful) function
might have discontinuities or irregularities, corresponding to rates of change that
could be infinite or even indefinable, which created havoc however one considered
differentiation. Worse, many such non-differentiable functions were mathemati-
cally significant, and indeed often practically useful for specialized calculations. So
one had, in effect, to choose between prioritizing, on the one hand, working directly
with the functions of interest, or ensuring one’s ability to take derivatives unpro-
blematically, on the other. If favoring the potendially non-differentiable functions,
one could attempt to work around their irregularities in a piecemeal fashion. If
seamless differentiation was more important, one could focus exclusively on
smooth functions that lacked troublesome irregularities altogether but somehow
approximated the non-differentiable functions. Either way, something was lost.

Promoting his theory, Schwartz paid special attention to one situation
where physicists and engineers had, in their own ways, grappled notably with
the tradeoff between irregular but supremely useful functions and their rigor-
ously tractable but less immediately useful cousins: their use of the Heaviside
and Dirac functions. I shall present them now in a somewhat more didactic
mode than I use for mathematical discussions in the rest of this article, where I
have attempted to hew as closely as possible to actors’ often ambiguous and
differentially understood presentations. Here, however, a less historically faith-
ful exegesis shall help illustrate the kinds of interactions among meanings,
techniques, and stipulations about rigor and validity that surface in other
guises in the ensuing historical discussion.

British electrical engineer Oliver Heaviside’s eponymous function seems at first
glance about as simple as a function could be. It relates an independent variable
(say, x) to a dependent variable (say, y) by giving y the value 0 when x is negative
and 1 when x is positive. If you interpret x as time, the Heaviside function can be
interpreted to represent flipping a switch at time x = o, with y = 0 meaning the
switch is off and y = 1 meaning the switch is on. On a Cartesian graph, the
Heaviside function is a flat line at altitude y = o to the left of the y-axis and a flat
line at altitude y = 1 to the right, forming a “step” shape.

24. Emile Picard, “Séance d’Ouverture du Congres: Allocution de M. Emile Picard,” in
Henri Villat, ed., Comptes Rendus du Congrés International des Mathématiciens (Strasbourg, 22—30
Septembre 1920) (Toulouse: Edouard Privat, 1921), xxvi—xxix, on xxviii—xxix.
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Heaviside used this function as a basic element for a method of symbolic
operations that many found enormously effective for a wide variety of calcula-
tions, but which proved controversial for its lack of adherence to prevailing
norms of mathematical rigor.?> To see the mathematical trouble, consider the
Heaviside function’s derivative. Almost everywhere, the y value of the function
does not change at all, and so the function has a derivative of 0 (meaning a null
rate of change). But at the crucial point x = o, the function jumps infinitely
quickly between the values o and 1 of the dependent variable y, so has an
infinite derivative at this point. Because it represents the rate of change nec-
essary to jump precisely from o to I in this instant, this function is sometimes
called the “unit impulse.” This one infinite value made calculations with the
Heaviside function’s derivative unrigorous, critics held.

Matters were worse for the derivative of the derivative: 0 except at x = o,
and when x = o rising infinitely quickly to reach the derivative’s infinite value
at that point, before falling (with x still 0) infinitely quickly to return to the
derivative’s subsequent value of o—that is, the Heaviside function’s second
derivative when x = o was positive infinity and simultaneously bur subsequently
negative infinity. Corresponding to the first derivative’s “unit impulse,” this
second derivative is sometimes called the “unit dipole” or “unit doublet,” since
its equal and opposite values—if “values” can be said to apply here—corre-
spond to precisely the acceleration needed to produce the instantaneous jump
from o to 1 whose velocity was reflected in the unit impulse.

Some decades after Heaviside debuted his symbolic calculus, Paul Dirac
introduced his own symbolic calculus using the Heaviside function and its
derivatives. Dirac’s calculus furnished an important method for atomic physics
but was likewise criticized by some as lacking proper mathematical founda-
tions. He denoted the Heaviside function’s derivative with the Greek letter 9,
and others subsequently referred to & as “Dirac’s function,” “Dirac’s delta,”
“the Dirac function,” or similar terms.

If one insisted on avoiding paradoxical infinities, one could imagine the
Heaviside function and its derivatives as the limits of corresponding sequences
of functions that were perfectly smooth and hence unproblematically differ-
entiable. In place of the Heaviside function itself, picture an S-shaped curve

25. Bruce J. Hunt, “Rigorous Discipline: Oliver Heaviside Versus the Mathematicians,” in
Peter Dear, ed., The Literary Structure of Scientific Argument: Historical Studies (Philadelphia:
University of Pennsylvania Press, 1991), 72—95; Jesper Liitzen, “Heaviside’s Operational Calculus
and the Attempts to Rigorise It,” AHES 21, no. 2 (1979): 161-200.
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that replaces the instantaneous leap of the Heaviside function at x = o with
a smooth take-off when x has merely a very tiny negative value, followed by
a rapid (but not infinitely so) rise toward y =1 and a smooth landing at y =1 as
x reaches a tiny positive value. The derivative then looks something like a very
tall bell centered around the y-axis, and the second derivative features two tall
bells: one peaking high and to the left of the y-axis and the other, upside-down,
dipping low to the right of the y-axis. These pictorial approximations (and
a corresponding set of customary equations) represented one response to the
function-derivative dilemma, letting one apply derivatives only to bounded
and differentiable functions at the cost of a great many more manipulations to
access the limiting results of the Heaviside and Dirac calculi.

A more common response to the dilemma, however, involved learning
a system of rules and conventions for manipulating the Heaviside, Dirac, and
related functions directly using ordinary formalisms for functions and their
derivatives. In some circumstances, these functions could be manipulated just
like any ordinary non-paradoxical function. In other circumstances, a few
principles combined with familiar rules of calculation to dictate how the
function could be used. For instance, to compute the integral of the Dirac
function, one used the values of its antiderivative (the Heaviside function) and
the formula from the Fundamental Theorem of Calculus, ignoring that this
theorem did not rigorously apply to the Dirac function.?® In yet other circum-
stances, users had to learn to rule certain questions or manipulations out of
bounds, as treading impermissibly on the functions’ paradoxical qualities.

That is, some ways users were accustomed to working with ordinary func-
tions translated easily to these other functions. Some ways translated some-
what, under the appropriate cautions and with some necessary contrivances.
Some other ways—such as examining them graphically or computing with
point-values—were inapplicable or applied only in rough approximations.
Users drew techniques and understandings from their training and aims,
recognizing paradox-laden functions as cognate to unproblematic ones in ways

specific to the contexts and purposes of their use. Even when using similar

b
26. The result is [ 8(x)dx = H(6) — H(a), which equals 1 if the interval [a, b] includes

a

o (that is, covers the “step” in the step function) and equals o otherwise. I have simplified the
foundational issues here. There are formulations of integration that give a rigorous definition for
the integral of 6, but & is not properly integrable using either Riemann or Lebesgue integration,
and conventional means of accounting for & prior to the theory of distributions did not always
account as well for its derivatives.
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symbolic representations for such functions, meanings attributed to them and
justifications for their uses could vary. Where an electrical engineer might see
an expression as representing an idealized electric potential, a quantum phys-
icist may rationalize a similar expression in terms of wave functions. Similar
manipulations could come from distinct rules and trainings. Paradoxes and
exceptions, too, were susceptible to different conceptualizations. Even simple
examples hid worlds of divergent meaning.

In many respects, this kind of conceptual and practical accommodation recalls
well-studied developments in the history of numbers.”” Negative numbers,
imaginary and complex numbers, and infinitesimals each owed in part to ten-
tative accommodations between mathematical principles and practical ends.
Each raised problems about rigor, generality, and foundational validity that
could be grounds for philosophical dispute. Each was defended in some quarters
as a useful (if not necessarily grounded) fiction, justified through its utility in
calculation. Eventually, new proposals about rigor and foundations proved their
worth in their capacity to integrate such once-exotic or exceptional numerical
entities as part of a coherent system. So, too, did Schwartz derive his theory’s
merit (and lay claim to its potential constituencies) from its systematic incor-
poration of Heaviside and Dirac calculi that had been variously accommo-
dated in other terms. Although many aspects of the story of distributions are
specific to their historical times and places, they were not without models and
patterns from the past that shaped both directly and indirectly how mathe-
maticians understood distributions. This history rhymes, and its protagonists

could hear it.

A THEORY IS BORN

Schwartz first sketched his theory for public consumption in an eighteen-page
article in the 1945 annual volume (printed in 1946) of the Annales de l'université
de Grenoble, the in-house publication series of the university where Schwartz
held his first academic appointment.”® The article itself, which he later called

27. Esp. Gert Schubring, Conflicts between Generalization, Rigor, and Intuition: Number
Concepts Underlying the Development of Analysis in 17-19th Century France and Germany (New
York: Springer, 2005); Leo Corry, A Brief History of Numbers (Oxford: Oxford University Press,
2015). I thank Olivier Darrigol for prompting an explicit discussion of this historical parallel.

28. Laurent Schwartz, “Généralisation de la notion de fonction, de dérivation, de transfor-
mation de Fourier et applications mathématiques et physiques,” Annales de université de
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his “propaganda tract,”® seems to have circulated mainly in the offprints
Schwartz distributed to an ever-growing circle of mathematicians. More sig-
nificantly, it is the earliest available record of the template for many of
Schwartz’s initial expositions of the theory of distributions, including his debut
lectures on the theory in his January—April 1946 Cours Peccot, a prestigious
half-century-old Paris lecture series for young mathematicians organized by the
College de France, and his July 1946 Bourbaki presentation.

The article’s page-long overture signaled Schwartz’s ambitions by beginning
with physicists and their calculations, not mathematicians and their proofs. Or
rather, with a caricature of physicists as freewheeling artisans of the Dirac
calculus, loyal to fruitful calculation but not to mathematical rigor. Though
the latter part of his article’s title promised “mathematical and physical appli-
cations,” Schwartz put all of the claimed physical applications in this brief
introduction, which centered on the alleged absurdities of the Dirac function
and its derivatives. “Since the introduction of the symbolic calculus,” Schwartz
began, “physicists have commonly made use of certain notions or certain
formulas for which the success is indisputable, while not being mathematically
justified.”

Schwartz described the Heaviside function (without the eponym) and then
introduced (under Dirac’s name) the key properties of the Dirac function:
“null for x # 0, equal to +00 for x = 0,” and with a definite integral of I over
its whole domain. “Such an ‘abuse of language,” wrote Schwartz, “is despite
everything incompatible with the habitual notion of function and derivation!”
He announced that his article would summarize a forthcoming monograph (an
albatross of a textbook that would take him the next half decade to complete)
that “will provide a complete justification to the preceding language,” and so
“rehabilitate” the Dirac formalism for mathematicians and physicists alike.

One should hesitate to take at face value Schwartz’s assertion about the
Dirac function’s faults. To be sure, Schwartz was not alone among mathema-
ticians in declaring the need for a completely rigorous justification of the Dirac
function. All the same, physicists, engineers, and even mathematicians had
developed a wide range of informal and formal justifications for their Dirac

calculi. With approximations, gestures, illustrations, and especially with rules

Grenoble 21 (1945): 57-74. On Schwartz’s wartime and early postwar situation, see MGC, 165-67,
190-91, 202, 211; BPL, §2.

29. MGC, 239.

30. On the Cours Peccot, see MGC, 240; BPL, §2. The latter ties Schwartz’s Cours Peccot
selection directly to his wartime Bourbaki connections.
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and conventions of symbolic manipulation, these scholars used the Dirac
function without being apparently beleaguered by supposed foundational dif-
ficulties. The Dirac function’s purported lack of mathematical justification
despite its usefulness was not a pre-given rationale or state of affairs, but rather
something Schwartz had to assert, in part by ruling its many manifest justifica-
tions to be non-mathematical or insufficiently rigorous.

The Dirac function’s derivatives supplied the template for Schwartz’s pro-
posed rehabilitation, both narratively and conceptually. Although the Dirac
function was not itself a conventional function, its users could understand it as
the derivative of the conventional Heaviside function, which was not differ-
entiable at the critical point x = 0. To justify an unconventional derivative of
a conventional function, Schwartz interpreted the Dirac function as a measure,
understood as a generalization of functions. Schwartz then portrayed the Dirac
function’s derivative, which was not rigorously valid as a conventional mea-
sure, as a linear functional, presented as a generalization of both measures and
functions. He then defined distributions as linear functionals (denoted 77) that
assigned a number to each infinitely differentiable function (denoted ¢) whose
value was o outside of a bounded region. These criteria for ¢ obviated trou-
blesome considerations about differentiability and boundary terms. When the
distribution was a measure (denoted p) or a function (denoted f*), the number
was determined by the definite integral of ¢ weighted by the function
or measure—in Schwartz’s symbolic notation, f(¢) = [ f(x)p(x)dx or
p(p) = [ @(x)dp. Under the right conditions distributions could correspond
to measures and measures in turn could correspond to functions, but each type
of object included examples that lacked counterparts of the less general type.

As contemporaries recognized, this sequence of generalizations rhymed with
the history of number concepts.®! Corresponding to functions and derivatives,
carlier scholars grappled with numbers and the operations of arithmetic and
algebra. Counting numbers (0, 1, 2, 3,...) were unproblematic under addi-
tion, but subtraction required generalizing to all integers, including once-
controversial negative numbers. As with the generalization from functions to
measures, when addition problems involved only counting numbers, every-
thing worked as before, but arithmetic with negative numbers expanded what
could be treated systematically and coherently. Integers accommodated addi-
tion, subtraction, and multiplication, but division called for fractions, or ratio-
nal numbers. Finally, mathematicians allowed a complete and systematic

31. Bohr, “Address” (ref. 4), 132.
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framework including the extraction of square roots by admitting imaginary
and complex numbers. Here, the chain of generalizations came to a close:
complex numbers did the job not just for square roots but for any algebraic
operations. Mathematicians learned to see this as evidence that the complex
numbers were a natural culmination of numerical generalizations, but this did
not stop efforts to find and advocate for yet further fruitful generalizations,
such as quaternions or continua that included infinitesimals.

Starting with the Heaviside function, successive derivatives required succes-
sive generalizations to accommodate them. Then, as with the algebraic culmi-
nation in complex numbers, the generalizations miraculously stopped at linear
functionals: every distribution had a derivative that was also a distribution, and
was itself the derivative of a distribution. Just as no operation of algebra would
ever need more than the complex numbers, no operation of the calculus (at
least as construed here) would require more than distributions. But what
exactly did “differentiation” mean when a distribution could not be inter-
preted as an ordinary function? Here, Schwartz followed his justification-
through-generalization in reverse. Any operation applied to a distribution that
happened to correspond to a function had to give the same result as the
corresponding conventional operation from integral and differential calculus.
Thus, the distributional derivative of a differentiable function was to match its
conventional derivative. Schwartz then defined operations for arbitrary distri-
butions (which did not, in general, have conventional derivatives) by translat-
ing a usual calculus presentation into one intelligible for linear functionals and
then declaring that to be the general definition for distributions.

This reasoning rested on a combination of formal and informal wordplay.
Arbitrary distributions were like functions, Schwartz implied, so operations
with the one should look and feel like those with the other, using similar
formalisms and terminology while calling upon similar intuitions. To define
differentiation, Schwartz began with a conventionally differentiable function f°
in 7 variables and its derivative in the direction of the 7th independent variable
x; (denoted with an apostrophe and a subscript variable). As a linear functional,

this gave the expression:

£(p) = // .../];j(xl, s 5) (1 oee s ) iy .

Then, Schwartz asserted, “there is no difficulty to integrate by parts,” applying

a routine technique from the conventional calculus to rewrite the expression as:
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£lo) = // .../f(xl, ) (s ) d . d,

or, in the idiom of linear functionals, f!(¢) = f (—(p;i) 32 The subtle but
important difference between the two integral expressions involved removing
the derivative from the function fand, along with introducing a minus sign,
applying the derivative instead to the function . Rendered in the compact
formalism of linear functionals, stripped of the visual trappings and technical
provisos of integration, the transformation was striking. Schwartz used this
formal sleight-of-hand to define the derivative of a distribution as 77, () =
T( —cp;l_). The left side of this equation had no prior definition—the whole
point of the endeavor was that 7" was not differentiable—but the right side
appeared mathematically sound because the functions denoted ¢ were pre-
sumed differentiable and their derivatives continued to meet the requirements
for the domain of the functionals 7, so there was no new difficulty for 7 to act
on those derivatives.

Integration by parts began, on the fifth page of Schwartz’s article, as a famil-
iar computational technique for evaluating integrals of conventionally differ-
entiable functions. By characterizing that technique instead as an operation in
the abstract calculus of functionals, within half a page he could declare that
integration by parts “permits the generalization of the notion of a derivative,”
and so he could correspondingly apply the formal operation of integration by
parts to distributions for which a conventional calculus interpretation was
impossible.>> To accomplish this, Schwartz elided the significant conceptual
distinctions between the superficially similar equations for functions and dis-
tributions, justifying the latter equation by portraying it as the same as the
former. He defined distributional derivatives by turning integration by parts
from a technique into a metaphor. This only worked by stripping both ex-
pressions of their mathematical justifications and conditions of validity, and
interpreting them instead through their formal appearances—a symbolic pun,
wordplay.

Such a pivotal use of what amounted to wordplay was plain to Schwartz’s
contemporaries. After Schwartz shared his theory late in 1947 with Marcel
Riesz in Lund, Sweden, the latter (in Schwartz’s telling) counseled him “to

32. Note that here the integral is implicitly over the entire domain of the function, with the
vanishing conditions on ¢ allowing Schwartz to omit boundary terms without comment.
33. Schwartz, “Généralisation,” (ref. 28), 61.
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watch out for what is nothing but. .. wordplay [jeu de mors],” as the “very
beautiful theory” still “wants for the effort of becoming deepened over the
years.”>* Riesz recognized wordplay as both a resource and a danger, offering
a beautiful formulation with considerable potential, provided one committed
to the extended labor of realizing the theoretical depths that wordplay itself
could only suggest. As the ensuing account shows, Schwartz both heeded and
skirted this advice, relying at times on his wordplay-mediated ability to pro-
mote the theory superficially and even to argue that its essence was reflected in
these superficial expositions. Indeed, Schwartz debuted his theory at a time
when wordplay seemed itself more and more central to the fundaments of

mathematical investigation.

MAKING SENSES OF DISTRIBUTIONS

Schwartz’s formal prestidigitation represented an approach to mathematical
argument increasingly visible in the twentieth century, one evident in a dual
meaning of the word “sense” (sens in French) in Schwartz’s 1945 article. The
first meaning came in references to “the usual sense” of terms, indicating a way
of understanding and using a term that might elsewhere be understood and
used differently. Beginning in the late nineteenth century, a significant minor-
ity of mathematicians and philosophers had devoted special attention to the
relationships between mathematics and the linguistic means and metamathe-
matical frameworks by and through which it was articulated.>> Though most
mathematicians did not share the full measure of that minority’s linguistic and
philosophical preoccupations, they nevertheless increasingly specified precise

interpretive contexts (or “senses”) for mathematical terms as a routine feature

34. Schwartz, “Premiers travaux” (ref. 3), 118. A translation of Schwartz’s fuller remarks in
context is in BPL, §6.

35. Corry, Modern Algebra (ref. 8); Ivor Grattan-Guinness, 7he Search for Mathematical Roots,
1870-1940: Logics, Set Theories and the Foundations of Mathematics from Cantor through Russell to
Gidel (Princeton, NJ: Princeton University Press, 2000); Herbert Mehrtens, Moderne—
Sprache—DMathematik: eine Geschichte des Streits um die Grundlagen der Disziplin und des Subjekts
formaler Systeme (Frankfurt am Main: Suhrkamp, 1990). Philosophies from this period continue
to animate investigations in the philosophy of science. Of particular note with respect to my
present argument is Emily R. Grosholz, Representation and Productive Ambiguity in Mathematics
and the Sciences (Oxford: Oxford University Press, 2007), 16-24, 33-60, 126-39, 227-84, which
takes the positive philosophy of Rudolf Carnap (e.g., Der logische Aufban der Welt, Berlin:
Weltkreis, 1928) as a starting point.
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of their expositions. Such specifications allowed mathematicians to recycle
terms deliberately, taking rhetorical advantage of the terms’ other meanings
while stressing the technical differences of their new proposed uses.

By renaming the context of derivatives while keeping the same terminology
for the operation of differentiation, Schwartz signaled that the essence of
differentiation would be unchanged. Conversely, by replacing “functions”
with the new term “distributions,” he suggested a more substantive conceptual
break—one not wholly embraced by the many who later translated distribu-
tions as “generalized functions.” The term “distributions” was itself borrowed
from probability, physics, and measure theory, and Schwartz’s distributions
shared many conceptual and practical features with distributions in these other
settings. To emphasize Schwartz’s particular context for “distributions,” espe-
cially in situations where other formulations of distributions might apply,
mathematicians came to refer to “Schwartz distributions” or “distributions
in the sense of Laurent Schwartz.”

Schwartz’s second usage of “sense” in the 1945 paper came from claims that
statements “have a sense” or “make sense” (@/ont un sens), or conversely that they
did not make sense. A formulation had a sense if it was completely justifiable, if
not necessarily completely justified in the work at hand. For example, Schwartz
asserted that “here, [derivatives] OA/0y and OB/Ox always have a sense qua
distributions.” This emphatic usage of sense was more particular to those writing
about mathematical foundations, for whom it stressed the presence or absence of
a coherent basis for an expression that might otherwise be assumed valid simply
by virtue of its use in a mathematical argument.

The ambition to guarantee that every mathematical notion had a sense was
a key pillar of the Bourbaki collaboration’s central project, a series of textbooks
titled Elements of Mathematic (singular).>® The introduction to the first volume
stipulated that the group’s texts were to be “formalized,” meaning that they
could in principle be expressed in a simple language with “a syntax consisting
of a small number of unbreakable rules” that guaranteed the sensibility of every
term. However, for the Bourbaki collaborators as for other mathematicians,
“having a sense” was almost invariably a promissory claim rather than a metic-
ulously demonstrated conclusion. Instead, Bourbaki explained, “In general
[the mathematician] is content to bring the exposition to a point where his

36. See Leo Corry, “Writing the ultimate mathematical textbook: Nicolas Bourbaki’s Elements
de mathématique,” in Eleanor Robson and Jacqueline Stedall, eds., 7he Oxford Handbook of the
History of Mathematics (Oxford: Oxford University Press, 2009), 565-88.
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experience and mathematical flair tell him that translation into formal lan-
guage would be no more than an exercise of patience (though doubtless a very
tedious one).”” In place of tedious formalities, Bourbaki permitted “abuses of
language” in order to make texts legible by assuming terms and claims to be
sensible without rigorously justifying them on the spot.®

Bourbaki did not, of course, have a monopoly on either “sensibility” or
mathematical foundations. After Bourbaki collaborator Jean Dieudonné laid
out the Bourbaki philosophy of axiomatic mathematical method at a 1949
Colloquium of Mathematical Philosophy at the Sorbonne, in Paris, the collo-
quium secretary and Sorbonne professor Arnaud Denjoy replied with a lengthy
denunciation in the colloquium proceedings.>* Dieudonné, for his part, as-
serted that “[t]he axiomatic method is tightly linked to the nature of deductive
reasoning itself” and recognized a historical ebb and flow of axiomatic reason-
ing with “periods of expansion” giving rise to controversy-filled “periods of
clearing [défrichement] . . . to restore the edifice to order.”40 Creativity and
rigor lay in tension, but at the same time “the axiomatic is perfectly compatible
with a certain sort of intuition” and mathematicians’ insistence on “sensible
experience” “rested on a psychological illusion” about the underlying source of
their convictions.! For Dieudonné, axiomatic methods represented a means
to support and clarify creative mathematics, not a stricture to rule out play and
inspiration.

Denjoy, by contrast, saw in Dieudonné’s regard for axioms and logic
a “fierce repudiation of every regard for testimony of sensible origin.”4? Noting
that “[a] French mathematical school already enjoys universal notoriety,
assembling itself under the emblems and pennants of a mythical chief, Nicolas

37. Nicolas Bourbaki, Elements of Mathematic: Theory of Sets (Paris: Hermann, 1968), 7-8 [N.
Bourbaki, Eléments de Mathématique, Livre 1: Théorie des Ensembles (Paris: Hermann, 1954), 1-2].

38. Bourbaki, Elements (ref. 37), vi, 11 [iii, 6].

39. Jean Dieudonné, “L’Axiomatique dans les mathématiques modernes,” in Raymond Bayer,
ed., XVII Congrés International de Philosophie des Sciences, Paris, 1949, vol. 3 (Paris: Hermann,
1951), 47-53; Arnaud Denjoy, “Rapport général sur les travaux du colloque de philosophie
mathématique,” in Bayer, ibid., 3—22. I encountered this reference in a 21 Feb 1952, letter from
Buenos Aires physicist and philosopher Mario Bunge to the Massachusetts Institute of Tech-
nology’s Dirk Struik, generally approving of Denjoy’s “unusually violent attack. . . against the
formalism of the Bourbaki group.” Papers of Dirk Jan Struik, MC.0418, Institute Archives and
Special Collections, MIT, Cambridge, MA, Box 7, Folder “A-C.”

40. Dieudonné, “L’Axiomatique” (ref. 39), 47.

41. Ibid., s0.

42. Denjoy, “Rapport général” (ref. 39), 8.



INTEGRATION BY PARTS | 279

Bourbaki,” Denjoy rued that “[p]roblems of definition and existence, barren
branches of a half-dead tree, flower again when one evokes Nicolas Bourbaki.”#3
The two core preoccupations reflected in Schwartz’s double meaning of
“sense”—definition (the sense of a term) and existence (having a sense)—must
for Denjoy be subordinated to the only sense that mattered, “the source of
original intuitions”: one’s sense of “a world composed of experiences borrowed
from the concrete.”** Denjoy elaborated this into a specific claim about the
source of sense and significance in mathematical symbols: “Symbols, their asso-
ciations ordered after set rules, do not come into possession of their signified
sense except in relation to a mind capable of grasping them. . . . the abstract must
always be clarified by the concrete.”®

Other critics saw in Bourbaki’s approach to language little more than a coy
evasion. Paul Halmos, introducing the collaboration to readers of Scientific
American, averred that Bourbaki’s insistence on calling out “abuses of lan-
guage” showed Bourbaki’s “slightly contemptuous” view of conventional ter-
minology while preserving the collaborators’ ability to use those same familiar
terms.4® But for Bourbaki this was precisely the point: mathematicians should
not eschew conventional terms but must always pay attention to the sense (in
Schwartz’s first usage) in which they made sense (in Schwartz’s second usage).
Bourbaki’s collaborators reveled in puns and parodies, and their intense, joc-
ular meetings demanded virtuosic displays of interpretive versatility across
fields of mathematics and their corresponding nuances of language.47 Their
rejection of naive or unconsidered usages was as much a social and cultural
norm as an intellectual and philosophical one—a social and cultural norm, it
should be said, that could be deliberately exclusive and mocking, even cruel, to
outsiders.

When Schwartz, borrowing Bourbaki’s turn of phrase, referred to the Dirac

function in his 1945 introduction as an “abuse of language,” he was not

43. Ibid., 6.

44. Ibid.

45. Ibid., 15-16.

46. Paul R. Halmos, “Nicolas Bourbaki,” Scientific American 196 (1957): 88-99, on 93—94.

47. Liliane Beaulieu, “Bourbaki’s Art of Memory,” Osiris 14 (1999): 219—51; Jean A.
Dieudonné, “The Work of Nicholas [sic] Bourbaki,” trans. Linda Bennison, AMM 77, no. 2
(1970): 134—45. On language and play as constitutive of mathematical sociability, cf. Jacqueline
D. Wernimont, “Poetico-Mathematical Women and The Ladies’ Diary,” in H. Marchitello and
E. Tribble, eds., The Palgrave Handbook of Early Modern Literature and Science (London: Palgrave
Macmillan. 2017), 337-50; Reviel Netz, Ludic Proof: Greek Mathematics and the Alexandrian
Aesthetic (Cambridge: Cambridge University Press, 2009).



280 | BARANY

condemning it but rather calling attention to its need for a sense—a sense
given to it at long last by distributions. Giving something such a sense could
itself be a sort of abuse of language, an invocation promising a justification
whose validity rested more on habit and experience than a tedious exercise of
patience. A full explication of what a term or expression meant as a statement
about distributions could be onerous, and was rarely necessary in order to
make a credible claim to sensibility. With practice, distributions’ users found
it easy to manipulate terms subject to the premises and implications of
Schwartz’s theory by, for instance, deploying integration by parts metaphor-
ically, and they could confidently recognize when and how it was appropriate
to do so. To those not versed in the theory’s substantial theoretical under-
pinnings, results sometimes seemed to come more from wordplay than from

rigorous mastery.

SENSE AND NONSENSE

The changing place of sense in modern mathematics found voice not only in
mathematical theory but in mathematical farce. In 1937, Ralph P. Boas and
some Princeton companions started a dinner table game of devising mathe-
matical methods for catching lions.*® Their 1938 article in the American Math-
ematical Monthly, published under a pseudonym (H. Pétard) in homage to
Bourbaki, sparked a vigorous genre of self-parody among mathematicians.®” Tt

featured methods such as:

THE METHOD OF INVERSIVE GEOMETRY. We place a spherical cage in the
desert, enter it, and lock it. We perform an inversion with respect to the
cage. The lion is then in the interior of the cage, and we are outside.”®

In his autobiography, Schwartz recalled a version for the theory of
distributions:

48. Gerald L. Alexanderson and Dale H. Mugler, eds., Lion Hunting & Other Mathematical
Pursuits: A collection of mathematics, verse and stories by Ralph P. Boas, Jr. (Washington, DC:
Mathematical Association of America, 1995), 9-10, 26.

49. Boas notes an influx of new methods after the article’s appearance in Boas to Tukey, §
Nov 1938, Series I, “Boas, Ralph Philip, 1938-1939 (Folder 1),” John W. Tukey Papers, American
Philosophical Society, Philadelphia, PA. T examine the connections between Pétard, Bourbaki,
and related mid-century pseudonyms in an essay currently in preparation.

so. H. Pétard, “A Contribution to the Mathematical Theory of Big Game Hunting,” AMM

45, no. 7 (1938): 446—47, on 446.
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Anything in the desert is a lion, but in the sense of distributions. For
example, a stone is a lion in the sense of distributions. So it suffices to
regularize it by a C> function with compact support, and it becomes a real
lion, which furthermore is infinitely differentiable!®!

Distributions offered mathematicians a sense in which every function was
differentiable, just one step removed from its conventional interpretation. A
ritual incantation of regularization by a smooth compact function completed
the trick, yielding a genuine function whose difficulties of differentiation had
been swept away in the calculus of distributions. Applied to lions rather than
functions, a magical-seeming intervention became sheer nonsense.

Schwartz’s 1997 account of “A lion in the sense of distributions” had enough
obvious misrecollections that I had included it in this essay just as an apocry-
phal illustration, true in spirit if not verifiably in fact. Then, while in the
archives pursuing a different project, I came across a 1951 letter that confirms
the story and its implications better than I could have imagined. In it, Boas
reported that he was “collecting new methods of lion hunting with a view to
bring Pétard’s minorem opus up to date,” and suggested “the office of Navel
Research”—parodying the Office of Naval Research that emerged after World
Woar II as a leading funder of American mathematical research and publica-
tion—may have sponsored the new project. Tucked between a method refer-
ring to Schwartz’s fellow 1950 Fields Medalist Atle Selberg and a method
deploying “a high speed computer,” one finds:

2. The Schwartz method. We can catch all lions. Of course the one we get
may be only a distribution, not a real live lion, but par abus de langage we
may regard it as a lion.

Boas signed the letter “Yours in a cage.”>? Here, functions are replaced by lions
and differentiating the former becomes catching the latter. Schwartz’s theory
let one differentiate any function, but the outcome was only guaranteed
in general to be a distribution, equivalent to a function only if the original

s1. MGC, 247. C* functions were those that were guaranteed to have no irregularities, and so
always had conventionally valid differential equations. These included the auxiliary functions ¢
used to define distributions.

52. Boas to Tukey, § Oct 1951, Series I, “Boas, Ralph Philip, 1941-1992 (Folder 3),” Tukey
Papers (ref. 49). In addition, the letter includes a method “not yet fully developed” using par-
adoxical properties of “the Tomonaga-Schwinger theory” discussed, e.g., in Kaiser, Drawing
theories (ref. 13), and a method inspired by Bourbaki collaborator André Weil’s wartime proof
of the Riemann Hypothesis over finite fields.
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function were differentiable. An abuse of language (whose Bourbaki connota-
tions Boas signaled by leaving the phrase in French), however, let one carry on
as though nothing was amiss. If a distribution could be regarded par abus de
langage as a function, it could just as well be a lion!

“Lion Hunting” was an effective parody because this kind of “abuse of
language” could be found in virtually any kind of recent mathematics.
Schwartz promoted his theory in a context where mathematicians plied famil-
iar and novel formulations in ways that made sense only when accorded
a proper interpretive framework, and where it was not just common but often
necessary for mathematicians to move between senses of a term in their argu-
ments. The parody lampooned a modern mathematics that appeared to many

like an exercise in making sense from licensed puns.

MULTIPLYING AUDIENCES

The slippage licensed by Schwartz’s language of senses appeared to some to be
particularly pronounced among physicists. An early student of Schwartz’s
recounted that “a good many limited their knowledge of the theory of dis-
tributions to the ritual phrase ‘according to Schwartz, it has a sense.””>3
Schwartz himself did little to discourage this attitude, and relished the spotlight
that came with his designation as physicists’ redeemer. Even those who might
have wished for a detailed technical justification rather than the personal
guarantee of the charismatic French theorist would have found it hard to come
by, especially through the written literature: before his 1950-1951 textbook, the
bulk of the theory’s formal development remained a promissory note alone. In
the interim, Schwartz cultivated an image of a theory that offered an easy
rectification to the problems of differentiation.

This image took the fore in his first major public lecture explicitly aimed at
non-mathematicians, on December 4, 1946, at the Society of Radio-
electricians, subsequently published in the Annales des Télécommunications.>*
Uniquely among his earliest presentations of the theory, Schwartz did not
define the derivative of a distribution by analogy to integration by parts.
Instead, he began with the difference quotient defining derivatives for

53. Bernard Malgrange, “Laurent Schwartz et la théorie des distributions,” in Anné et al.,
Supplément (ref. 18), 67—74, on 67—68.

54. Laurent Schwartz, “Généralisation de la notion de fonction et de dérivation: Théorie des
distributions,” Annales des Telecommunications 3, no. 4 (1948): 135—40.
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conventional functions in one variable. Interpreting this in terms of transla-
tions, Schwartz constructed a corresponding difference quotient for linear
functionals and manipulated that into the equation 77(¢) = —7'(¢’). Only
as an afterthought did Schwartz add that “the formula is, in fact, that of
integration by parts.”

Integral calculus was an effectively universal element of undergraduate sci-
ence and engineering curricula in this period, and integration by parts was a core
part of mathematicians™ stock-in-trade.”> Although the telecommunications
audience would surely have been familiar with integration by parts, Schwartz
did not assume its use and teaching to be so central to their routine practice, and
so the metaphor took a back seat. Rather, Schwartz stressed how distributions
allowed “the complete justification of certain processes” where “one boldly uses
the ‘Dirac function” and asserted that “the systematic manipulation of distribu-
tions permits evaluation with greater ease and fewer chances to commit errors.”
Despite its “complicated appearance,” he proposed, his framework “is in reality
very simple and demands just a little mathematical knowledge.”

Claiming his theory’s simplicity, Schwartz walled off the often-difficult
recent developments in the theory of functions and topological vector spaces
that (at least in principle) underwrote his distributions’ prized rigorous foun-
dation. Instead, he emphasized distributions as tools for a conventionally
acceptable and ultimately simple technical method learnable by rote and
sight—precisely the kind of method his audience already had in the Dirac
and Heaviside calculi. Simple could also mean superfluous, and for many it
was enough just to know that the theory of distributions justified what they
were already doing. This early presentation would prove more important for
Schwartz himself, helping him hone a view of his theory as simple, fundamen-
tal, and meaningful for non-mathematicians, whether or not non-
mathematicians themselves endorsed the sentiment.>®

Schwartz’s next major venue, what Paumier has called the “springboard” for
Schwartz and his theory, arose from the Rockefeller Foundation’s postwar

interventions to rebuild a European and trans-Atlantic scientific community.57
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56. See PLS, 150-54.
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(2016): 39—s1; BPL; John Krige, American Hegemony and the Postwar Reconstruction of Science
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As a result of the developments described up to this point, Schwartz was
positioned both intellectually and institutionally for an international launch
under the new terms of postwar international science and mathematics, asso-
ciated here especially with Rockefeller philanthropy. Directed by Warren
Weaver, the Foundation’s Division of Natural Sciences partnered with the
CNRS to conduct international colloquia centered around specific topics of
contemporary research. Weaver intended to maximize informal interaction
and scientific contacts and to spread the benefits of foreign visitors and research
investment to provincial universities so as to reorganize French science on an
American model of regional, national, and international competition. Such
imposed decentralization significantly accelerated Schwartz and his theory’s
international recognition, as the French mathematician was still years away
from a firm foothold in the elite institutions of Paris that could otherwise
afford him such a profile.

One of an initial pair of Rockefeller-CNRS colloquia in mathematics was
a meeting on Harmonic Analysis in June 1947 at the Faculty of Sciences of
Nancy, where Schwartz had been appointed in 1945. The meeting’s roster
featured researchers at a range of career stages from Nancy, Paris, the United
States, Scandinavia, Switzerland, and Britain. As a local junior colleague to the
colloquium’s primary hosts, Schwartz assisted with organizational correspon-
dence and was able to give a presentation of his own and to circulate his
“propaganda tract” on distributions among the materials shared with partici-
pants in advance of the meeting.>®

Danish delegates Harald Bohr (the younger brother of physicist Niels, and
a mathematician of considerable international stature) and his protégé Borge
Jessen were so impressed with Schwartz’s performance that they invited him to
lecture in Copenhagen the following October.”® To Schwartz’s “agreeable
surprise,” in preparation for the October visit Bohr had made a personal study
of Schwartz’s 1945 paper and turned it into a course at his university.®°
Whereas Schwartz’s presentation in Nancy favored the kind of difficult

in Europe (Cambridge: MIT Press, 2006), chap. 4; Doris Zallen, “The Rockefeller Foundation
and French Research,” Cahiers pour I'histoire du CNRS 5 (1989): 35—58; Doris Zallen, “Louis
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no. 1 (1991): 6-37.

§8. Paumier, “Nancy” (ref. §7), 42—43.

59. BPL, §5. The colloquium also helped precipitate trips to London and Oxford in 1948.
MGG, 302.

60. Laurent to Marie-Hélene Schwartz, § Nov 1947, in Schwartz, “Premiers travaux” (ref. 3), 114.
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technical and conceptual considerations one would expect at such a specialist
gathering, for his Copenhagen audience Bohr urged Schwartz to reemphasize
the theory’s potential as a bridge between pure and applied mathematics, in
part in response to the institutional conditions of his Danish visit to both the
university and polytechnical school. This framing—of a pure theory that
redeemed and even improved technical practice—became central for Bohr.
Fully in the thrall of Schwartz’s visit, the Danish mathematical elder states-
man committed to travel to North America early in the following year
to lecture on topics including “the generalization of the notion of differen-
tiability of Laurent Schwartz.”®! Bohr’s lectures on Schwartz’s theory, in
Copenhagen and then New York and several other key North American
sites, were likely the first such expositions outside of France and Western
Europe, respectively. Indeed, I have argued in detail elsewhere that Bohr
helped precipitate nearly every one of Schwartz’s most important interna-
tional milestones between 1947 and 1950, sometimes in ways opaque to
Schwartz himself.?

An early hint of Schwartz’s formulation, however, had already in 1947 reached
most American sites of mathematical research (and many beyond the United
States) through a brief entry on Schwartz’s 1945 article in Mathematical Reviews.
Then less than a decade old, the review journal had been created by the Amer-
ican Mathematical Society with the financial support of the Rockefeller Foun-
dation and Carnegie Corporation in response to the nazification of the
pioneering German review journal, Zentralblatt fiir Mathematik.%® A short,
ambivalent review of Schwartz’s article signaled that he had proposed new
definitions for “functions” and “derivatives” in order to justify the Dirac func-
tion and its derivatives, but the reviewer did not mention the term

“distributions.”®*

61. New York University Archives, Papers of Richard Courant, Box 30, Folder 15, Bohr to
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It would take another two years for the CNRS to publish the proceedings of
the Nancy colloquium.®> However Schwartz published a revised and some-
what elaborated version of his contribution, aimed at specialists in mathemat-
ical analysis, in the Annales de luniversité de Grenoble later in 1947.°° The same
year the CNRS proceedings appeared, the 1947 article was reviewed in both
Mathematical Reviews and the Zentralblatz fiir Mathematik, the latter of which
had been revived in Berlin in 1947, with operations in both Western and Soviet
zones. For Mathematical Reviews, Irving Segal of the University of Chicago
briefly noted Schwartz’s new definitions and some of their claimed applica-
tions.®” For the Zentralblatt, meanwhile, Freiburg mathematician Gustav
Doetsch offered an exceptionally long and detailed review (running to some
two-and-a-half pages of small print) praising both Schwartz’s 1947 and 1945
papers as offering a “new way” that made difficulties surrounding the Dirac
function, for instance, “disappear completely.”68 Doetsch, who directed war-
time mathematical research from his post in the German Aviation Ministry,
was at the time he reviewed Schwartz’s article still suspended from the Uni-
versity of Freiburg under the institution’s denazification regime.®® Though the
documentary record on Doetsch’s Nazism is unclear, there was no doubt of his
zeal for mathematical applications, and he became one of Schwartz’s most
ardent early non-francophone promoters. His reviews gave yet another
layer of meaning to Schwartz’s postwar project of sense-giving, one that
must have been especially significant for an expurgated scholar in occupied
Germany: according to Doetsch, distributions “gave citizenship” to the
Dirac function and other deracinated denizens of a mathematics in need
of new foundations.
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A CONSIDERABLE SIMPLIFICATION

On the strength of Bohr’s endorsement, Schwartz was among four foreign
mathematicians invited to headline the second quadrennial meeting of the
Canadian Mathematical Congress in Vancouver and its associated summer
seminar in 1949.”° Here, the Dirac function’s redeemer met its most famous
user, English mathematical physicist Paul Dirac himself, who found Schwartz’s
lectures at least sufficiently engaging to remain awake for their duration.”! In
addition to Schwartz and Dirac, Polish mathematician Antoni Zygmund of
the University of Chicago and Indian mathematical physicist Homi J. Bhabha
of the Tata Institute of Fundamental Research rounded out the meeting’s
“Lecture Series on Research Topics.”’? Schwartz’s eight summer seminar
lectures closely followed his 1948 Annales des Télécommunications article, an
English translation of which was appended to the typed notes distributed to
participants.”? His lecture notes took the article’s claims about the theory’s ease
to an even greater extreme: distributions were now suited “for young students
and engineers,” a “considerable simplification, without requiring great math-
ematical insight.”74 Indeed, borrowing another Bourbaki phrase, Schwartz
went so far as to assert that “it is possible to start the theory from zero.”””
This latter version of Schwartz’s theory, one emphasizing its metaphors and
the formal manipulations they licensed, took center stage the following year on
Schwartz’s second trans-Atlantic voyage, to Cambridge, Massachusetts. At the
opening ceremony of the 1950 International Congress of Mathematicians, he
was one of two mathematicians to be presented with a Fields Medal by the
selection committee’s chair, Harald Bohr.”® Though Bohr lauded the “sensa-
tional character” of the work of the first medalist, Atle Selberg, it would have
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been clear to those assembled that the balance of Bohr’s enthusiasm lay with
Schwartz and his theory of distributions. Indeed, I have elsewhere analyzed
new archival evidence that makes clear that Bohr’s enthusiasm for the
mathematician and his theory led him to manipulate the Fields Medal
selection itself to ensure that Schwartz would be a recipient.”” In a presen-
tation double the length devoted to Selberg, Bohr attested to his “consid-
erable amount of pleasant excitement, on seeing the wonderful harmony of
the whole structure of the calculus to which the theory leads and on
understanding how essential an advance its application may mean to many
parts of higher analysis.””®

By 1950, Bohr was a comparatively seasoned evangelist for the theory of
distributions. With a tradesman’s polish and a convert’s zeal, he depicted
a theory fit for the exertions of young researchers, offering precepts that “may
find their place even in the more elementary courses of the calculus in uni-
versities and technical schools.” For many in his audience, this was the first
glimpse of the theory of distributions. The theory took hold after 1950 in part
because, for many, a single glimpse was enough. Its most striking claims were
“so easy to explain,” professed Bohr, that he “cannot resist the tempration,
notwithstanding the general solemn nature of this opening meeting, to go into
some detail.” Hewing closely to Schwartz’s 1945 article, from which he had
derived his Copenhagen course, Bohr began with the Dirac function and its
derivatives and the series of generalizations that would tame them, culminating
with linear functionals. He then followed Schwartz’s presentation of differen-
tiation by way of integration by parts for functions of one variable, stressing the
formal similarities that allowed derivatives to be defined for all distributions.
Bohr’s irresistible details, however, remained at a level of simple formal ma-
nipulations, framings, and comparisons, free from most of the technical scaf-
folding and theoretical apparatus of mathematical analysis from which they
were derived.

In his brief time at the podium, Bohr demonstrated that a meaningful
appreciation of Schwartz’s theory did not require anything approaching a tech-
nical mastery of the theory or its contexts in modern analysis. Bohr’s irresistible

details were, to be sure, closely tied to the proofs, structures, problems, and
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practices of those who had made distributions an object of sustained study, and
for whom such details guided intuitions and shaped narratives and explana-
tions. But the theory’s advanced research community, such as it was, depended
on a significantly larger audience of those interested in the theory at different
levels and for different purposes, some of whom would become experts but
most of whom would not. This large group of mathematicians newly familiar
with distributions would supply, in the coming years, the theory’s enthusiastic
researchers, their supportive colleagues, seminar audiences, and prize commit-
tees. Without proofs and with very few formal statements, Bohr made
Schwartz’s theory available to its largest audience yet. It was metaphors and
comparisons, not formal proofs and structures nor problems and practices, that
constituted the theory for this group, at least at first.

The research community for the theory of distributions, importantly, did
not include Bohr himself. Although Bohr worked in areas of analysis related to
those to which distributions were pertinent before his death in January 1951, he
has not typically been cited as a contributor to the theory itself. Because he
lacked an identifiable research result about distributions, historians and math-
ematicians have almost entirely neglected his crucial contribution to the the-
ory’s meteoric early adoption—arguably his last major intervention on the
stage of international mathematics. However, that same lack was perhaps what
made his ultimate contribution possible. Bohr had enough expertise to grasp
and articulate the theory’s significance, but without the messy experience from
first-hand research of having to grapple with its intricate difficulties and ambi-
guities.”” At a slight remove from the theory’s sometimes dense technicalities
and unresolved tensions, he was an ideal ambassador.

A TRAVELING THEORY

The intercontinental fallout of Bohr’s evangelism was swift and far-reaching,
By the summer of 1950, the Paris publisher Hermann had released the first

volume of Schwartz’s inexpensively printed textbook on the theory of

79. Cf. note 9 on MacKenzie’s “certainty trough” of trust in technical systems. One might
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meeting Schwartz in Vancouver, and certainly falls to the left of Bohr on the corresponding
certainty trough for the Dirac calculus.
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distributions, and the second followed in 1951.3° Spurred by Bohr’s advertise-
ment, the textbook became a fixture of mathematics libraries and an obligatory
citation for those adapting or applying Schwartz’s theory. As they had for
Schwartz’s 1947 paper, Segal and Doetsch reviewed the volumes in, respec-
tively, Mathematical Reviews and the Zentralblatt fiir Mathematik, ensuring
a broad general awareness of the textbook in its relevant specialist communi-
ties.8! These review journals also began, with increasing frequency after 1950,
to signal researchers’ burgeoning interest in distributions with reviews of new
publications. These reviews, typically written in English or French by
Schwartz’s sympathizers (and sometimes by Schwartz himself), routinely
referred to Schwartz’s textbook and terminology, even if the work under review
was not framed as a contribution to Schwartz’s theory by its own author.®? The
limited format of a review article proved an ideal mechanism for annexing and
consolidating such wide-ranging works, with just enough space to signal broad
uniting claims without presenting the details wherein lay the most significant
differences and departures. To note a novel development in such a review often
amounted to identifying a key term and connecting it to other terminological
(often eponymic) touchstones of the field—a word-focused exercise in assert-
ing the sense of the intervention. This lent the theory of distributions a self-
reinforcing appearance of coherence and broad interest. Annual direct citations
of Schwartz’s textbook peaked in Mathematical Reviews at 15 (in 1955), and
together its volumes were invoked in §2 separate Mathematical Reviews entries
between 1951 and 1958.%3

While Schwartz’s textbook served for most mathematicians (including those
who did not work primarily in French) as the definitive reference on the
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foundations of the theory of distributions, a range of introductory texts by
others made the theory recognizable in a much broader range of settings,
languages, and disciplinary idioms than would have been possible with
Schwartz’s writings alone. Geographically, these texts appeared in nearly every
region with a significant mathematical publishing infrastructure, from South
America to South Asia to the Soviet Union. Some authors aimed primarily to
draw attention to Schwartz’s own work.®* Others, however, presumed that
Schwartz’s theory was in need of domestication or reframing for their partic-
ular audiences, particularly if that audience included physicists.

Canadian mathematician Israel Halperin, for instance, adapted Schwartz’s
Vancouver lectures into a short pamphlet aimed at mathematical physicists.®®
Halperin’s pamphlet began with the Heaviside and Dirac functions and as-
serted that distributions gave “rigorous content and validity to the formulae of
operational calculus” associated with those two figures and their functions.®¢
U.S.-based Dutch mathematician Jacob Korevaar produced a series of articles
“from the point of view of applied mathematics,” also beginning with Dirac
and Heaviside and their symbolic manipulation and claiming that Schwartz’s
distributions gave “a mathematical basis for these formulas and for the use of
other improper functions.”®” Argentine mathematician Alberto Gonzélez
Dominguez, who likely first learned of the theory from Bohr’s presentation
at the 1950 International Congress, offered his own account just over a year
later in Uruguay of distributions as a rigorous means of deriving formulas from
quantum physics otherwise obtained symbolically—that is, of distributions as
licensed wordplay.®® Mathematical physicists themselves increasingly heeded
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Schwartz’s early suggestions of distributions’ relevance to their research, and in
so doing found a theory in need of considerably more reformulation and
adaptation than Schwartz had implied.®’

Even pure mathematicians found many features of Schwartz’s presentations
wanting. Polish mathematician Jan Mikusinski advanced an operator-theoretic
interpretation of the theory that stressed the notion of weak convergence,
beginning with a series of articles in French from 1948 to 1950 and culminating
with a 1957 textbook on the subject, with distributions exemplifying a more

general phenomenon with wider potential applications than was evident from

Schwartz’s focus on mathematical physics and differential equations.’®

Schwartz, reviewing Mikusinski’s work in English in Mathematical Reviews,
explicitly compared the latter’s approach to his 1945 exposition, and so claimed
it for the theory of distributions.”! Note the inversion: Mikusinski considered
Schwartz’s theory a narrow application of his own, and Schwartz likewise
presented Mikusinski’s theory as a specialized contribution to the theory of
distributions. They sparred, in other words, over the sense of their respective
theories.

While Mikusiniski became a particularly widely cited authority in Central
and Eastern Europe, renderings like Schwartz’s in compact sense-driven set-
tings like Mathematical Reviews helped ensure that a great share of the Polish
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mathematician’s citations in the West took his theory as Schwartz did. Oxford
mathematician George Temple, for instance, claimed to have derived his
“alternative and simplified exposition” of Schwartz’s “highly abstract” theory
of distributions from Mikusinski’s, which he depicted as a means of domes-
ticating distributions for “the physicist and engineer” by emphasizing mathe-
matical techniques of approximation and convergence.”? In contrast to the
instrumental framing with which Mikusinski’s theory’s crossed from East to
West, Soviet mathematicians Israel Gelfand and Georgeii Shilov’s monumen-
tal five-volume 1958 work Generalized Functions travelled largely intact (albeit
much more slowly) with the help of systematic cover-to-cover translation
programs that brought Russian works to English, French, and German audi-
ences.”® Here, the cultural and intellectual authority granted to both the Soviet
authors and their institutional context helped them benefit from systematic
efforts to comprehend foreign theories on their own terms. At the same time,
linguistic decisions in the translations, especially those concerning fundamen-
tal terminology, inevitably favored some senses and interpretations of the
Soviet work over others.

Many important expository and programmatic works emerged from a pro-
liferation of seminars and courses that mathematicians organized to teach and
investigate the theory in its several guises. Postwar Paris witnessed an efflores-
cence of research seminars devoted to framing the latest developments of
international mathematics through the concepts and styles of the seminars’
participants.94 In addition to his vigorous participation in such seminars,
Schwartz offered a heavily subscribed series of lectures in mathematical physics
and other topics after moving to Paris from Nancy in 1953, and these were
frequently an occasion to print inexpensive collections of lecture notes from

92. George Temple, “Theories and Applications of Generalized Functions,” Journal of the
London Mathematical Society 28, no. 2 (1953): 134—48; George Temple, “The Theory of Gener-
alized Functions,” Proceedings of the Royal Society of London. Series A, Mathematical and Physical
Sciences 228, no. 1173 (1955): 175-90.

93. E.g., I. M. Gelfand and G. E. Shilov, Obobshchennye funktsii i deistviya nad nimi, Moscow:
Gosudarstv. Izdat. Fiz.-Mat. Lit., 1958; Verallgemeinerte Funktionen (Distributionen) (Berlin:
Deutscher Verlag der Wissenschaften, 1960); Les Distributions, trans. G. Rideau (Paris: Dunod,
1962); Generalized Functions, trans. Eugene Saletan (New York: Academic Press, 1964). Note that
the titles of the translations reflect the francophone nomenclature of Schwartz, the anglophone
nomenclature of Temple, and a combination in German.

94. See Paumier, “Le séminaire” (ref. 19); PLS, chap. 5§, which considers both Schwartz’s
seminar participation and the seminars’ broader scope and background.
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Schwartz or his students.”® These lectures helped secure Schwartz’s reputation
in France as a leading contributor to applied mathematics, despite his associ-
ation with a Bourbaki program often seen as indifferent or hostile to applica-
tions.”® Where Schwartz himself was not present, lecturers made more
deliberate use of his textbook and their own contacts among researchers on
distributions.”” In the United States, Britain, and France, such courses pre-
pared advanced undergraduates for further work in mathematics or mathemat-
ical physics by introducing a theory at once easily appreciated in its rudiments
and notably on the discipline’s cutting edge.

The same apparent features that made the theory of distributions an
appealing subject for an advanced undergraduate course made it all the more
promising as a topic of special lectures from visiting mathematicians. The
former Trotskyist and continuing political activist Schwartz, along with his
American supporters, made a series of tactical mistakes during his 1949
application to visit the United States that nearly prevented him from coming
in 1950 to accept his Fields Medal. The highly visible debacle left significant
uncertainty over his subsequent prospects for lecturing in the United
States.”® Mathematicians at farther-flung institutions, many of whom were
present at the 1950 International Congress of Mathematicians to hear Bohr’s
presentation, capitalized on this situation to bring Schwartz to their own
shores. They were helped in their efforts by support from U.S. mathemati-

cians and funding sources, as well as increasingly available scholarly travel

95. Laurent Schwartz, Théorie élémentaire des distributions (Paris, 1955); sece MRoo8o707; A.
Martineau and F. Tréves, Eléments de la Théorie des Espaces Vectoriels Topologiques et des Dis-
tributions, fascicule 1: Eléments de la Théorie des Distributions (Paris: Centre de Documentation
Universitaire, 1964 [1954—55 lectures]).

96. P. Germain, “Applied Mathematics in France,” Proceedings of a Conference on Training in
Applied Mathematics, Sponsored by the American Mathematical Society and the National Research
Council under Contract NSF-C7 with the National Science Foundation, Columbia University, 22—
24 Oct, 1953, 48-53, on §3, in Series I, “American Mathematical Society. Committee on Applied
Mathematics, 1948-1954,” Tukey Papers (ref. 49).

97. E.g., Rademacher Papers, Box 10, Folder 2, Rockefeller faculty archives, Rockefeller
Archive Center; “Course on Distributions [1951-1952],” Box 17, Papers of Marshall Stone, John
Hay Library, Brown University (including an outline for Claude Chevalley’s course on the theory
at Columbia University); “Lectures in Applied Mathematics (Honours) Schedules 1955-56,”
Folder Cr, Lighthill papers, University College London, 26; M. J. Lighthill, /ntroduction to
Fourier Analysis and Generalised Functions (Cambridge: Cambridge University Press, 1958). See
DPM, chap. s.

98. RG 65, FBI Headquarters Case File 100-HQ-367305 re Laurent Schwartz 490/45/01/4,
Box §327, National Archives and Records Administration; DPM, chap. 4.
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funding from international bodies like the United Nations Educational,
Scientific and Cultural Organization.

Where Cold War politics might have been expected to limic Schwartz’s
travel, in many ways they had the opposite effect, especially for travel to what
came to be known as the Third World. After 1950, Schwartz lectured to
enthusiastic audiences in a variety of venues over periods ranging from days
to months, including trips to Yugoslavia in 1951, Brazil in 1952, Mexico and
Tunisia in 1953, India in 1955, Colombia and Argentina in 1956, India again in
1957, and Argentina again in 1958.”° In India, Colombia, and Argentina, his
host institution arranged for lecture notes to be edited and published, and such
notes circulated widely in both the centers and peripheries of elite mathemat-
ics.'% These international contacts helped Schwartz and his supporters to
establish a cohort of younger researchers reaching from France to Northern
Europe, the United States, Brazil, and Argentina.'®!

To the extent scholars of distributions the world over formed and sustained
a coherent research community, they did so through the means and media that
brought Schwartz early recognition. Conferences and colloquia allowed them
to couch new developments in familiar terms, often by letting recognizable
symbolic manipulations stand in for an unwieldy mass of detailed research.
New textbooks and expository works plied metaphors from local disciplinary
idioms to domesticate an initially radical theory. Decorated experts followed
the paths of Bohr and Schwartz, promoting and studying distributions in
foreign lands. Most kept abreast of new work in the area through abstracting
journals and related means of abbreviated communication. If mathematical
research hinged on protracted engagement with fine points of difficult con-
cepts, mathematical research communities were sustained principally with
what could be shared quickly and recognizably, and could be readily assigned
a sense-making sense. Despite genuine differences among theorists in Poland,

99. See Anné et al., Supplément (ref. 18), 19; Laurent Schwartz, Mission Report, 1952,
United Nations Educational, Scientific and Cultural Organization online document database
(UNESDOC) 159434.

100. Laurent Schwartz, Lectures on Complex Analytic Manifolds (Bombay: TIFR, 1955);
Schwartz, Ecuaciones Diferenciales Parciales Elipticas (Bogota: Universidad Nacional de Colombia,
1956); Schwartz, Lectures on Mixed Problems in Partial Differential Equations and Representations of
Semi-Groups (Bombay: TIFR, 1958); Schwartz, Matematica y Fisica Cuantica (Buenos Aires:
Universidad de Buenos Aires, 1958).

101. See Michael J. Barany, “Fellow Travelers and Travelling Fellows: The intercontinental
shaping of modern mathematics in mid-twentieth century Latin America,” Historical Studies in
the Natural Sciences 46, no. § (2016): 669—709.
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France, Britain, the Americas, and beyond, the theory of distributions attained
an intercontinental reach by accommodating the kinds of partially shared
legibilities that let each make sense of each other in their respective terms.

METAPHORS AND LIVED INCOHERENCE

International research communities, much less intercontinental ones, do not
arise spontaneously. They require interconnected but geographically dispersed
groups of individuals to decide to study the same topic, secure the means to do
so, communicate their findings to each other, and recognize their work as part
of a coherent body of scholarship. For the community that coalesced in the
early postwar period around the theory of distributions, mathematicians met
each of these requirements through means where evocative metaphors and
suggestive framings did far more to foster interest and an appearance of com-
mon enterprise than did the rigorous technical constructs commonly associ-
ated with modern mathematics. That those metaphors and framings drew their
power in part by helping distributions’ advocates to promise rigorous founda-
tions was, here, not an irony or a contradiction but a reflection of the changing
nature of mathematical theory and research. Detailed, meticulous work by
committed investigators on the theory’s finer points would be important, to
be sure, but that was not the work that made the theory travel so far and so fast,
across languages and continents, in the mid-twentieth century.

Integrating distributions into one’s day-to-day mathematics required difficult
learning and adaptation, but integrating them into one’s worldview required
litde more than evocative metaphors like those of Schwartz’s initial “propaganda
tract” and Bohr’s 1950 address—metaphors derived from quotidian practice but
with a life of their own. These two promoted distributions by transferring the
difficulty of mastering the theory to the lesser difficulty of appreciating it, of
acting as though all one needed was a well-chosen rearrangement of symbols and
a change in signs. Indeed, in this period this kind of wordplay-inflected appre-
ciation was, in many settings, all one could hope for and all that was required.
The rise of the theory of distributions bears witness to the outsized effect that
short summaries in review journals, brief lectures by traveling scholars, and
cursory conceptual introductions in regional publications could have for orga-
nizing researchers separated by distance, training, and idiom. These medium-
dependent connections made it possible for the theory to move from the French

provinces to multiple continents in less than a decade.
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Mid-century contexts of communication fit some theories and mathemati-
cians better than others, and ensured that the most communicable aspects of
any given theory came to dominate how mathematicians understood and
shared what they did. Distributions were distinctive in the extent to which
the kinds of metaphors and wordplay that traveled so well in lectures and
review journals were central features of the theory’s earliest articulation. From
Schwartz’s first publication on the subject and reverberating through his and
others’ early expositions, the theory depended on deft reframings of familiar
terms and operations like differentiation and integration by parts. As Schwartz,
Bohr, and others rearticulated the theory of distributions in successive presenta-
tions in its early years, they emphasized and reemphasized the symbolic manip-
ulations and claims (especially regarding the Dirac and Heaviside functions) that
made the theory most recognizable, at the expense of the technical apparatus that
they purported would guarantee the theory’s rigor (and thus its merit as means of
foundational rehabilitation). Distributions could thrive in part because such
reframings had become, over the preceding half century, primary mechanisms
of mathematical argument and exposition—ones based on the intermingling of
Schwartz’s two senses of “sense”: having an (in principle) logical foundation and
having a (working) context that promises such a foundation.

It was neither possible nor necessary that mathematical physicists in Man-
chester meant the same thing by generalized functions as operator theorists in
Warsaw, function theorists in Chicago, or mathematical analysts in Rio de
Janeiro. Distributions varied, in this period, not only along a spectrum from
suggestive metaphors to detailed programs of research. Scholars’ different
articulations of the theory reflected the different frameworks and communities
of the interlinked national and regional communities in which it was elabo-
rated, debated, and pursued. In Brazil, Schwartz portrayed it as an ingredient
in modernization—Dboth of mathematics and of a nation. In France, the theory
was strongly identified with its charismatic originator and (in many eyes) the
abstract program of Bourbaki, allied with modernization of a different sort. In
the United States, to which Schwartz could not travel with ease, the theory
found a range of institutional homes and advocates. In England, Temple made
it out to be a foreign theory whose utility and grace emerged only upon
a suitable domestication. He understood the foundational significance of se-
quences and the topology of functions in a way that could appear radically
different from, for instance, the understanding Mikusinski promulgated in
Warsaw, but mutually recognizable formalisms, examples, and terminology

let each develop his respective approach in his respective sense.
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Divergent interpretations of the theory let scholars in new places with varied
interests find something in the theory of distributions worth pursuing, and
those same scholars followed their lines of inquiry to very different ends,
enrolling other people and ideas along the way. Communities of distribution
theorists and their respective interpretations of the theory came together, to the
extent that they did, through plentiful but circumscribed opportunities to
travel and through the circulation of publications and reviews. But most of
all, they came together through metaphors. Though the theory took many
forms in many places in its first decade, its users could deploy common
analogies and images to convince themselves that they were studying the same
thing, and to effect meaningful exchanges amongst themselves. Their convic-
tion of common ground necessarily came before the long and hard work of
reconciling diverse ideas and institutions.

Such rhetorical features tied together a community of researchers that,
though highly differentiated, was itself integrated by parts. Among the chief
challenges to the historiography of twentieth-century mathematics has been
the technically difficult work of assessing the relationships between different
theoretical productions. The early history of distributions offers a reminder
that such technical reconciliation was an ongoing and difficult task for histor-
ical mathematicians themselves—one in which, moreover, mathematicians
needed not always be wholly successful to sustain significant programs of
research. Rather than seeking coherence in historical theories, historians of
modern mathematics can heed what was often the lived incoherence of those
theories and the necessarily superficial but nonetheless important ways such
theories cohered nonetheless.
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